ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast neutron sensitivity of neutron detectors based on boron-10 converter layers

61   0   0.0 ( 0 )
 نشر من قبل Giacomo Mauri
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternatives technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the gamma-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.

قيم البحث

اقرأ أيضاً

The 3He-based neutron detectors are no longer the default solution for neutron scattering applications. Both the inability of fulfilling the requirements in performance, needed for the new instruments, and the shortage of 3He, drove a series of resea rch programs aiming to find new technologies for neutron detection. The characteristics of the new detector technologies have been extensively tested to prove their effectiveness with respect to the state-of-the-art technology. Among these, the background rejection capability is crucial to determine. The signal-to-background ratio is strongly related to the performance figure-of-merit for most instruments. These are designed to exploit the high flux expected from the new high intensity neutron sources. Therefore, an inadequate background rejection could significantly affect the measurements, leading to detector saturation and misleading events. This is of particular importance for the kind of techniques in which the signals are rather weak. For the first time, the sensitivity of 3He detectors to fast neutrons, up to En = 10 MeV, has been estimated. Two independent measurements are presented: a direct calculation based on a subtraction method used to disentangle the thermal and the fast neutron contribution, while a further evidence is calculated indirectly through a comparison with the recently published data from a 10B-based detector. Both investigations give a characterization on the order of magnitude for the sensitivity. A set of simulations is presented as well in order to support and to validate the results of the measurements. A sensitivity of 4x10-3 is observed from the data. This is two orders of magnitude higher than that previously observed in 10B-based detectors.
95 - I. Mor , D. Vartsky , D. Bar 2009
Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.
91 - A. Backis 2020
The boron-10 based Multi-Grid detector is being developed as an alternative to helium-3 based neutron detectors. At the European Spallation Source, the detector will be used for time-of-flight neutron spectroscopy at cold to thermal neutron energies. The objective of this work is to investigate fine time- and energy-resolved effects of the Multi-Grid detector, down to a few $mu$eV, while comparing it to the performance of a typical helium-3 tube. Furthermore, it is to characterize differences between the detector technologies in terms of internal scattering, as well as the time reconstruction of ~ $mu$s short neutron pulses. The data were taken at the Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube were installed at the ESS test beamline, V20. Using a Fermi-chopper, the neutron beam of the reactor was chopped into a few tens of $mu$s wide pulses before reaching the detector, located a few tens of cm downstream. The data of the measurements show an agreement between the derived and calculated neutron detection efficiency curve. The data also provide fine details on the effect of internal scattering, and how it can be reduced. For the first time, the chopper resolution was comparable to the timing resolution of the Multi-Grid detector. This allowed a detailed study of time- and energy resolved effects, as well as a comparison with a typical helium-3 tube.
The Multi-Blade is a Boron-10-based neutron detector designed for neutron reflectometers and developed for the two instruments (Estia and FREIA) planned for the European Spallation Source in Sweden. A reflectometry demonstrator has been installed at the AMOR reflectometer at the Paul Scherrer Institut (PSI - Switzerland). The setup exploits the Selene guide concept and it can be considered a scaled-down demonstrator of Estia. The results of these tests are discussed. It will be shown how the characteristics of the Multi-Blade detector are features that allow the focusing reflectometry operation mode. Additionally the performance of the Multi-Blade, in terms of rate capability, exceeds current state-of-the-art technology. The improvements with respect to the previous prototypes are also highlighted; from background considerations to the linear and angular uniformity response of the detector.
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا