ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattered neutron background in thermal neutron detectors

90   0   0.0 ( 0 )
 نشر من قبل Eszter Dian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Dian




اسأل ChatGPT حول البحث

Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the background scattering sources is required for effective suppression. The Multi-Grid thermal neutron detector is an Ar/CO$_{2}$ gas filled detector with a $^{10}$B$_{4}$C neutron converter coated on aluminium substrates. It is a large-area detector design that will equip inelastic neutron spectrometers at the European Spallation Source (ESS). To this end a parameterised Geant4 model is built for the Multi-Grid detector. This is the first time thermal neutron scattering background sources have been modelled in a detailed simulation of detector response. The model is validated via comparison with measured data of prototypes installed on the IN6 instrument at ILL and on the CNCS instrument at SNS. The effect of scattering originating in detector components is smaller than effects originating elsewhere.



قيم البحث

اقرأ أيضاً

The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeV
Multilayer position-sensitive 10B-RPC thermal neutron detectors offer an attractive combination of sub-millimeter spatial resolution and high (>50%) detection efficiency. Here we describe a new position reconstruction method based on a statistical ap proach. Using experimental data, we compare the performance of this method with that of the centroid reconstruction. Both methods result in a similar image linearity/uniformity and spatial resolution. However, the statistical method allows to improve the image quality at the detector periphery, offers more flexible event filtering and allows to develop automatic quality monitoring procedures for early detection of situations when a change in the detector operation conditions starts to affect reconstruction quality.
116 - V. Merlo , M. Salvato , M. Cirillo 2014
A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $rightarrow$ $alpha$+ 7Li , with $alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the future perspectives leading to neutron detectors with unprecedented spatial resolutions and efficiency are highlighted.
We present experimental results on the counting rate measurements for several single-gap $^{10}$B lined resistive plate chambers ($^{10}$B-RPCs) with anodes made from standard float glass, low resistivity glass and ceramic. The measurements were perf ormed at the V17 monochromatic neutron beamline (3.35 .A) at the Helmholtz-Zentrum Berlin. For the $^{10}$B-RPCs with 0.28 mm thick float glass a maximum counting rate density of about $8times 10^{3}$ $Hz/cm^{2}$ was obtained. In the case of low resistivity glass and ceramic, the counting rate density did not deviate from linear dependence on the neutron flux up to the maximum flux available at this beamline and exceeded a value of $3times 10^{4}$ $Hz/cm^{2}$.
We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamm a rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to thermal neutrons, fission neutrons, and high energy neutrons, with detection features distinctive for each energy range. It is capable of determining the location of a source of fission neutrons based on characteristics of elastic scattering of neutrons by helium nuclei. The detector we have constructed could identify one gram of reactor grade plutonium, one meter away, with less than one minute of observation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا