ترغب بنشر مسار تعليمي؟ اضغط هنا

GIT Stability of Henon Maps

76   0   0.0 ( 0 )
 نشر من قبل Joseph H. Silverman
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $operatorname{Rat}_d^N$ of degree $d$ rational maps $mathbb{P}^Ntomathbb{P}^N$ modulo the conjugation action of $operatorname{SL}_{N+1}$. We show that Henon maps are in the GIT unstable locus if $Nge3$ or $dge3$, and that they are semistable, but not stable, in the remaining case of $N=d=2$. We also give a general classification of all unstable maps in $operatorname{Rat}_2^2$.

قيم البحث

اقرأ أيضاً

238 - John R. Doyle 2017
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic points for a quadratic polynomial map may be endowed with the structure of a directed graph satisfying certain strict conditions; we call such a graph admissible. Given an admissible graph $G$, we construct a curve $X_1(G)$ whose points parametrize quadratic polynomial maps -- which, up to equivalence, form a one-parameter family -- together with a collection of marked preperiodic points that form a graph isomorphic to $G$. Building on work of Bousch and Morton, we show that these curves are irreducible in characteristic zero, and we give an application of irreducibility in the setting of number fields. We end with a discussion of the Galois theory associated to the preperiodic points of quadratic polynomials, including a certain Galois representation that arises naturally in this setting.
We show that the dynamics of sufficiently dissipative semi-Siegel complex Henon maps with golden-mean rotation number is not $J$-stable in a very strong sense. By the work of Dujardin and Lyubich, this implies that the Newhouse phenomenon occurs for a dense $G_delta$ set of parameters in this family. Another consequence is that the Julia sets of such maps are disconnected for a dense set of parameters.
107 - John R. Doyle 2018
Given a number field $K$ and a polynomial $f(z) in K[z]$ of degree at least 2, one can construct a finite directed graph $G(f,K)$ whose vertices are the $K$-rational preperiodic points for $f$, with an edge $alpha to beta$ if and only if $f(alpha) = beta$. Restricting to quadratic polynomials, the dynamical uniform boundedness conjecture of Morton and Silverman suggests that for a given number field $K$, there should only be finitely many isomorphism classes of directed graphs that arise in this way. Poonen has given a conjecturally complete classification of all such directed graphs over $mathbb{Q}$, while recent work of the author, Faber, and Krumm has provided a detailed study of this question for all quadratic extensions of $mathbb{Q}$. In this article, we give a conjecturally complete classification like Poonens, but over the cyclotomic quadratic fields $mathbb{Q}(sqrt{-1})$ and $mathbb{Q}(sqrt{-3})$. The main tools we use are dynamical modular curves and results concerning quadratic points on curves.
We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs $fcolon (X,x_0)to (X,x_0)$, where $X$ is a complex surface having $x_0$ as a normal singularity. We prove that as long as $x_0$ is not a cusp singularity of $X$, then it is possible to find arbitrarily high modifications $picolon X_pito (X,x_0)$ such that the dynamics of $f$ (or more precisely of $f^N$ for $N$ big enough) on $X_pi$ is algebraically stable. This result is proved by understanding the dynamics induced by $f$ on a space of valuations associated to $X$; in fact, we are able to give a strong classification of all the possible dynamical behaviors of $f$ on this valuation space. We also deduce a precise description of the behavior of the sequence of attraction rates for the iterates of $f$. Finally, we prove that in this setting the first dynamical degree is always a quadratic integer.
We describe an algorithm for distinguishing hyperbolic components in the parameter space of quadratic rational maps with a periodic critical point. We then illustrate computer images of the hyperbolic components of the parameter spaces V1 - V4, which were produced using our algorithm. We also resolve the singularities of the projective closure of V5 by blowups, giving an alternative proof that as an algebraic curve, the geometric genus of V5 is 1. This explains why we are unable to produce an image for V5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا