ﻻ يوجد ملخص باللغة العربية
We show that the dynamics of sufficiently dissipative semi-Siegel complex Henon maps with golden-mean rotation number is not $J$-stable in a very strong sense. By the work of Dujardin and Lyubich, this implies that the Newhouse phenomenon occurs for a dense $G_delta$ set of parameters in this family. Another consequence is that the Julia sets of such maps are disconnected for a dense set of parameters.
For quadratic polynomials of one complex variable, the boundary of the golden-mean Siegel disk must be a quasicircle. We show that the analogous statement is not true for quadratic Henon maps of two complex variables.
It was recently shown by Gaidashev and Yampolsky that appropriately defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Henon map converge super-exponentially fast to a one-dimensional renormalization fixed point. In this p
In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $operatorname{Rat}_d^N$ of degree $d$ rational maps $mathbb{P}^Ntomathbb{P}^N$ modulo the conjugation action of $operatorname{SL}_{N+1}$. We show that Henon
As was recently shown by the first author and others, golden-mean Siegel disks of sufficiently dissipative complex quadratic Henon maps are bounded by topological circles. In this paper we investigate the geometric properties of such curves, and demonstrate that they cannot be $C^1$-smooth.
It is shown that critical phenomena associated with Siegel disk, intrinsic to 1D complex analytical maps, survives in 2D complex invertible dissipative H{e}non map. Special numerical method of estimation of the Siegel disk scaling center position (fo