ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of the V-V dimerization in insulator-metal transition and optical transmittance of pure and doped VO2 thin films

98   0   0.0 ( 0 )
 نشر من قبل Dinesh Shukla
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. S. Majid




اسأل ChatGPT حول البحث

Insulator to metal (IMT) transition (T$_t$ $sim$ 341 K) in the VO2 accompanies transition from an infrared (IR) transparent to IR opaque phase. Tailoring of the IMT and associated IR switching behavior can offer potential thermochromic applications. Here we report on effects of the W and the Tb doping on the IMT and associated structural, electronic structure and optical properties of the VO2 thin film. Our results show that the W doping significantly lowers IMT temperature ($sim$ 292 K to $sim$ 247 K for 1.3% W to 3.7% W) by stabilizing the metallic rutile, $it{R}$, phase while Tb doping does not alter the IMT temperature much and retains the insulating monoclinic, $it{M1}$, phase at room temperature. It is observed that the W doping albeit significantly reduces the IR switching temperature but is detrimental to the solar modulation ability, contrary to the Tb doping effects where higher IR switching temperature and solar modulation ability is observed. The IMT behavior, electrical conductivity and IR switching behavior in the W and the Tb doped thin films are found to be directly associated with the spectral changes in the V 3$it{d_{|}}$ states.



قيم البحث

اقرأ أيضاً

158 - E. Radue , E. Crisman , L. Wang 2012
In this paper we used Raman spectroscopy to investigate the optical properties of vanadium dioxide (VO2) thin films during the thermally induced insulating to metallic phase transition. We observed a significant difference in transition temperature i n similar VO2 films grown on quartz and sapphire substrates: the film grown on quartz displayed the phase transition at a lower temperature (Tc=50C) compared a film grown on sapphire (Tc=68C). We also investigated differences in the detected Raman signal for different wavelengths and polarizations of the excitation laser. We found that for either substrate, a longer wavelength (in our case 785 nm) yielded the clearest VO2 Raman spectra, with no polarization dependence.
The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding o f how the properties of these materials are affected by the presence of defects and doping. In this study we investigate the impact of native point defects in the form of Frenkel defects on the structural, magnetic and electronic properties of VO$_2$ and V$_2$O$_3$, using first-principles calculations. In VO$_2$ the vanadium Frenkel pairs lead to a non-trivial insulating state. The unpaired vanadium interstitial bonds to a single dimer, which leads to a trimer that has one singlet state and one localized single-electron $S=1/2$ state. The unpaired broken dimer created by the vanadium vacancy also has a localized $S=1/2$ state. Thus, the insulating state is created by the singlet dimers, the trimer and the two localized $S=1/2$ states. Oxygen Frenkel pairs, on the other hand, lead to a metallic state in VO$_2$, but are expected to be present in much lower concentrations. In contrast, the Frenkel defects in V$_2$O$_3$ do not directly suppress the insulating character of the material. However, the disorder created by defects in V$_2$O$_3$ alters the local magnetic moments and in turn reduces the energy cost of a transition between the insulating and conducting phases of the material. We also find self-trapped small polarons in V$_2$O$_3$, which has implications for transport properties in the insulating phase.
The Metal-Insulator transition (MIT) in VO2 is characterized by the complex interplay among lattice, electronic and orbital degrees of freedom. In this contribution we investigated the strain-modulation of the orbital hierarchy and the influence over macroscopic properties of the metallic phase of VO2 such as Fermi Level (FL) population and metallicity, i.e., the material ability to screen an electric field, by means of temperature-dependent X-ray Absorption Near Edge Structure (XANES) and Resonant Photoemission spectroscopy (ResPES). We demonstrate that the MIT in strained VO2 is of the Filling Control type, hence it is generated by electron correlation effects. In addition, we show that the MIT in Nanostructured (NS) disordered VO2, where the structural phase transition is quenched, is driven by electron correlation. Therefore a fine tuning of the correlation could lead to a precise control and tuning of the transition features.
Magnetic and magnetotransport properties of oriented polycrystalline Pr0.58Ca0.42MnO3 thin films prepared in flowing oxygen and air ambient has been investigated. The magnetic ground state of both the films is a frozen cluster glass. In the air annea led film charge order (CO) is quenched and ferromagnetic (FM) transition, which appears at TC=148 K is followed by antiferromagnetic (AFM) transition at TN=104 K. This film shows self-field hysteretic insulator-metal transition (IMT) at TIMC=89 K and TIMW=148 K in the cooling and warming cycle, respectively. Application of magnetic field (H) gradually enhances TIMC and TIMW, reduces the thermoresistive hysteresis and TIM diminishes. In contrast, the film annealed in flowing oxygen shows a CO transition, which is followed by FM and AFM transitions. This film shows appreciably smaller magnetic moment and does not show IMT upto H=20 kOe. As H is increased to H=30 kOe, IMT having strong thermoresistive hysteresis and sharp resistivity jumps appears in the cooling and warming cycles. As H increases to higher values the thermoresistive hysteresis is reduced, resistivity jumps are observed to disappear and TIM decreases. In the lower temperature regime the resistivity first decreases slowly with H and then shows sharp drop. The virgin cycle is not recoverable in subsequent cycles. The decrement far more pronounced in the oxygen annealed film and occurs at much higher H suggesting that the frozen cluster glass state is more robust in this film. The microstructural analysis of the two set of films shows CO quenching, FM transition and self-field IMT in air annealed film is caused by higher density of microstructural disorder and lattice defects. The difference in growth ambience of the two films could give rise to such microstructural perturbations.
298 - Sieu D. Ha , Gulgun H. Aydogdu , 2011
The correlated oxide SmNiO3 (SNO) exhibits an insulator to metal transition (MIT) at 130 {deg}C in bulk form. We report on synthesis and electron transport in SNO films deposited on LaAlO3 (LAO) and Si single crystals. X-ray diffraction studies show that compressively strained single-phase SNO grows epitaxially on LAO while on Si, mixed oxide phases are observed. MIT is observed in resistance-temperature measurements in films grown on both substrates, with charge transport in-plane for LAO/SNO films and out-of-plane for Si/SNO films. Electrically-driven memristive behavior is realized in LAO/SNO films, suggesting that SNO may be relevant for neuromorphic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا