ترغب بنشر مسار تعليمي؟ اضغط هنا

Substrate Effect on Optical Properties of Insulator-Metal Transition in VO2 Thin Films

110   0   0.0 ( 0 )
 نشر من قبل Irina Novikova
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we used Raman spectroscopy to investigate the optical properties of vanadium dioxide (VO2) thin films during the thermally induced insulating to metallic phase transition. We observed a significant difference in transition temperature in similar VO2 films grown on quartz and sapphire substrates: the film grown on quartz displayed the phase transition at a lower temperature (Tc=50C) compared a film grown on sapphire (Tc=68C). We also investigated differences in the detected Raman signal for different wavelengths and polarizations of the excitation laser. We found that for either substrate, a longer wavelength (in our case 785 nm) yielded the clearest VO2 Raman spectra, with no polarization dependence.

قيم البحث

اقرأ أيضاً

We study the thermal relaxation dynamics of VO$_2$ films after the ultrafast photo-induced metal-insulator transition for two VO$_2$ film samples grown on Al$_2$O$_3$ and TiO$_2$ substrates. We find two orders of magnitude difference in the recovery time (a few ns for the VO$_2$/Al$_2$O$_3$ sample vs. hundreds of ns for the VO$_2$/TiO$_2$ sample). We present a theoretical model that accurately describes the MIT thermal properties and interpret the experimental measurements. We obtain quantitative results that show how the microstructure of the VO$_2$ film and the thermal conductivity of the interface between the VO$_2$ film and the substrate affect long time-scale recovery dynamics. We also obtain a simple analytic relationship between the recovery time-scale and some of the film parameters.
97 - S. S. Majid 2019
Insulator to metal (IMT) transition (T$_t$ $sim$ 341 K) in the VO2 accompanies transition from an infrared (IR) transparent to IR opaque phase. Tailoring of the IMT and associated IR switching behavior can offer potential thermochromic applications. Here we report on effects of the W and the Tb doping on the IMT and associated structural, electronic structure and optical properties of the VO2 thin film. Our results show that the W doping significantly lowers IMT temperature ($sim$ 292 K to $sim$ 247 K for 1.3% W to 3.7% W) by stabilizing the metallic rutile, $it{R}$, phase while Tb doping does not alter the IMT temperature much and retains the insulating monoclinic, $it{M1}$, phase at room temperature. It is observed that the W doping albeit significantly reduces the IR switching temperature but is detrimental to the solar modulation ability, contrary to the Tb doping effects where higher IR switching temperature and solar modulation ability is observed. The IMT behavior, electrical conductivity and IR switching behavior in the W and the Tb doped thin films are found to be directly associated with the spectral changes in the V 3$it{d_{|}}$ states.
The Metal-Insulator transition (MIT) in VO2 is characterized by the complex interplay among lattice, electronic and orbital degrees of freedom. In this contribution we investigated the strain-modulation of the orbital hierarchy and the influence over macroscopic properties of the metallic phase of VO2 such as Fermi Level (FL) population and metallicity, i.e., the material ability to screen an electric field, by means of temperature-dependent X-ray Absorption Near Edge Structure (XANES) and Resonant Photoemission spectroscopy (ResPES). We demonstrate that the MIT in strained VO2 is of the Filling Control type, hence it is generated by electron correlation effects. In addition, we show that the MIT in Nanostructured (NS) disordered VO2, where the structural phase transition is quenched, is driven by electron correlation. Therefore a fine tuning of the correlation could lead to a precise control and tuning of the transition features.
Impedance spectroscopy measurements were performed in high quality Vanadium dioxide (VO2) thin films. This technique allows us investigate the resistive and capacitive contribution to the dielectric response near the metal-insulator transition (MIT). A non ideal RC behavior was found in our films from room temperature up to 334 K. A decrease of the total capacitance was found in this region, possibly due to interface effects. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately. Around the MIT, an increase of the total capacitance is observed.
194 - Yao Shuai , Xin Ou , Chuangui Wu 2012
BiFeO3 thin films have been deposited on Pt/sapphire and Pt/Ti/SiO2/Si substrates with pulsed laser deposition using the same growth conditions, respectively. Au was sputtered as the top electrode. The microscopic structure of the thin film varies by changing the underlying substrate. Thin films on Pt/sapphire are not resistively switchable due to the formation of Schottky contacts at both the top and the bottom interface. However, thin films on Pt/Ti/SiO2/Si exhibit an obvious resistive switching behavior under forward bias. The conduction mechanisms in BiFeO3 thin films on Pt/sapphire and Pt/Ti/SiO2/Si substrates are discussed to understand the different resistive switching behaviors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا