ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Spectroscopies Reveal Percolative Metal in Disordered Mott Insulators

99   0   0.0 ( 0 )
 نشر من قبل Joseph Szabo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We elucidate the mechanism by which a Mott insulator transforms into a non-Fermi liquid metal upon increasing disorder at half filling. By correlating maps of the local density of states, the local magnetization and the local bond conductivity, we find a collapse of the Mott gap toward a V-shape pseudogapped density of states that occurs concomitantly with the decrease of magnetism around the highly disordered sites but an increase of bond conductivity. These metallic regions percolate to form an emergent non-Fermi liquid phase with a conductivity that increases with temperature. Bond conductivity measured via local microwave impedance combined with charge and spin local spectroscopies are ideal tools to corroborate our predictions.



قيم البحث

اقرأ أيضاً

Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Due to disorder, inhomogeneities appear in the spatial distribution of the local Chern marker. Their size exhibits power-law scaling with the critical exponent matching the one extracted from the Berry curvature of a clean system. We drive the system slowly through such a quantum phase transition. The characteristic size of inhomogeneities in the non-equilibrium post-quench state obeys the Kibble-Zurek scaling. In this setting, the local Chern marker thus does behave in a similar way as a local order parameter for a symmetry breaking second order phase transition. The Kibble-Zurek scaling also holds for the inhomogeneities in the spatial distribution of excitations and of the orbital polarization.
We analyse the phase diagram of ultra-cold bosons in a one-dimensional superlattice potential with disorder using the time evolving block decimation algorithm for infinite sized systems (iTEBD). For degenerate potential energies within the unit cell of the superlattice loophole-shaped insulating phases with non-integer filling emerge with a particle-hole gap proportional to the boson hopping. Adding a small amount of disorder destroys this gap. For not too large disorder the loophole Mott regions detach from the axis of vanishing hopping giving rise to insulating islands. Thus the system shows a transition from a compressible Bose-glass to a Mott-insulating phase with increasing hopping amplitude. We present a straight forward effective model for the dynamics within a unit cell which provides a simple explanation for the emergence of Mott-insulating islands. In particular it gives rather accurate predictions for the inner critical point of the Bose-glass to Mott-insulator transition.
The topological Anderson and Mott insulators are two phases that have so far been separately and widely explored beyond topological band insulators. Here we combine the two seemingly different topological phases into a system of spin-1/2 interacting fermionic atoms in a disordered optical lattice. We find that the topological Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing in the phase diagram of our model. Lying between the two phases, we uncover a disordered correlated topological insulator, which is induced from a trivial band insulator by the combination of disorder and interaction, as the generalization of topological Anderson insulators to the many-body interacting regime. The phase diagram is determined by computing various topological properties and confirmed by unsupervised and automated machine learning. We develop an approach to provide a unified and clear description of topological phase transitions driven by interaction and disorder. The topological phases can be detected from disorder/interaction induced edge excitations and charge pumping in optical lattices.
Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping induced insulator to metal transition is still a subject under intensive investigation. Here we probe the nanoscal e electronic structure of the Mott insulator Sr$_2$IrO$_{4-delta}$ with low-temperature scanning tunneling microscopy and find enhanced local density of states (LDOS) inside the Mott gap at the location of individual apical oxygen site defects. We visualize paths of enhanced conductance arising from the overlapping of defect states which induces finite LDOS at the Fermi level. By combining these findings with the typical spatial extension of isolated defects of about 2~nm, we show that the insulator to metal transition in Sr$_2$IrO$_{4-delta}$ is of percolative nature.
By using a combination of detailed experimental studies and simple theoretical arguments, we identify a novel mechanism characterizing the hopping transport in the Mott insulating phase of Ca$_{2-x}$Sr$_x$RuO$_4$ near the metal-insulator transition. The hopping exponent $alpha$ shows a systematic evolution from a value of $alpha=1/2$ deeper in the insulator to the conventional Mott value $alpha=1/3$ closer to the transition. This behavior, which we argue to be a universal feature of disordered Mott systems close to the metal-insulator transition, is shown to reflect the gradual emergence of disorder-induced localized electronic states populating the Mott-Hubbard gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا