ﻻ يوجد ملخص باللغة العربية
The topological Anderson and Mott insulators are two phases that have so far been separately and widely explored beyond topological band insulators. Here we combine the two seemingly different topological phases into a system of spin-1/2 interacting fermionic atoms in a disordered optical lattice. We find that the topological Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing in the phase diagram of our model. Lying between the two phases, we uncover a disordered correlated topological insulator, which is induced from a trivial band insulator by the combination of disorder and interaction, as the generalization of topological Anderson insulators to the many-body interacting regime. The phase diagram is determined by computing various topological properties and confirmed by unsupervised and automated machine learning. We develop an approach to provide a unified and clear description of topological phase transitions driven by interaction and disorder. The topological phases can be detected from disorder/interaction induced edge excitations and charge pumping in optical lattices.
We demonstrate that a combination of disorder and interactions in a two-dimensional bulk topological insulator can generically drive its helical edge insulating. We establish this within the framework of helical Luttinger liquid theory and exact Emer
Topology and disorder have deep connections and a rich combined influence on quantum transport. In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engine
We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develo
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another f
We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that con