ﻻ يوجد ملخص باللغة العربية
We analyse the phase diagram of ultra-cold bosons in a one-dimensional superlattice potential with disorder using the time evolving block decimation algorithm for infinite sized systems (iTEBD). For degenerate potential energies within the unit cell of the superlattice loophole-shaped insulating phases with non-integer filling emerge with a particle-hole gap proportional to the boson hopping. Adding a small amount of disorder destroys this gap. For not too large disorder the loophole Mott regions detach from the axis of vanishing hopping giving rise to insulating islands. Thus the system shows a transition from a compressible Bose-glass to a Mott-insulating phase with increasing hopping amplitude. We present a straight forward effective model for the dynamics within a unit cell which provides a simple explanation for the emergence of Mott-insulating islands. In particular it gives rather accurate predictions for the inner critical point of the Bose-glass to Mott-insulator transition.
We elucidate the mechanism by which a Mott insulator transforms into a non-Fermi liquid metal upon increasing disorder at half filling. By correlating maps of the local density of states, the local magnetization and the local bond conductivity, we fi
The topological Anderson and Mott insulators are two phases that have so far been separately and widely explored beyond topological band insulators. Here we combine the two seemingly different topological phases into a system of spin-1/2 interacting
Bosons in a periodic lattice with on-site disorder at low but non-zero temperature are considered within a mean-field theory. The criteria used for the definition of the superfluid, Mott insulator and Bose glass are analysed. Since the compressibilit
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate
We study charge transport in one-dimensional graphene superlattices created by applying layered periodic and disordered potentials. It is shown that the transport and spectral properties of such structures are strongly anisotropic. In the direction p