ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic Media Inflation

65   0   0.0 ( 0 )
 نشر من قبل Luigi Pilo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of inflation driven by an adiabatic self-gravitating medium, extending the previous works on fluid and solid inflation. Such a class of media comprises perfect fluids, zero and finite temperature solids. By using an effective field theory description, we compute the power spectrum for the scalar curvature perturbation of constant energy density hypersurface $zeta$ and the comoving scalar curvature perturbation ${cal R}$ in the case of slow-roll, super slow-roll and $w$-media inflation, an inflationary phase with $w$ constant in the range $-1 <w <-1/3$. A similar computation is done for the tensor modes. Adiabatic media are characterized by intrinsic entropy perturbations that can give a significant contribution to the power spectrum and can be used to generate the required seed for primordial black holes. For such a media, the Weinberg theorem is typically violated and on super horizon scales neither $zeta$ nor ${cal R}$ are conserved and moreover $zeta eq {cal R}$. Reheating becomes crucial to predict the spectrum of the imprinted primordial perturbations. We study how the difference between $zeta$ and ${cal R}$ during inflation gives rise to relative entropic perturbations in $Lambda$CDM.



قيم البحث

اقرأ أيضاً

We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal $k$-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the c anonical inflation. Inspired by Fakir and Unruhs model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of $ e $-folds. As in the result for the canonical inflation, the regularized power spectrum tends to the bare power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the bare power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving non-minimal coupling and varying speed of sound.
We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions, the setup is free from the ghost and gradient instabilities while it hosts a number of novel properties. The dispersion relation of scalar perturbations develops quartic momentum correction similar to the setup of ghost inflation. Furthermore, the tilt of tensor perturbations can take either signs with a modified consistency relation between the tilt and the amplitude of tensor perturbations. Despite the presence of higher derivative interactions coupled to gravity, the tensor perturbations propagate with a speed equal to the speed of light as required by the LIGO observations. Furthermore, the higher derivative interactions induce non-trivial interactions in cubic Hamiltonian, generating non-Gaussianities in various shapes such as the equilateral, orthogonal, and squeezed configurations with observable amplitudes.
In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the dynamical systems theory. We focus in the study of two explicit models where it is possible to sum the infinite series of higher curvature corr ections that arises in the formalism. These would be very interesting possibilities since, if regard gravity as a quantum effective theory, a key feature is that higher powers of the curvature invariants are involved at higher loops. Hence, naively, consideration of the whole infinite tower of curvature invariants amounts to consideration of all of the higher order loops. The global dynamics of these toy models in the phase space is discussed and the quantum origin of primordial inflation is exposed.
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit a n isotropic power-law inflation provided that the scalar field is phantom. Furthermore, stability analysis based on the dynamical system method is performed to indicate that this inflation solution is indeed stable and attractive. More interestingly, a gradient instability in tensor perturbations is shown to disappear in this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا