ﻻ يوجد ملخص باللغة العربية
We study the dynamics of inflation driven by an adiabatic self-gravitating medium, extending the previous works on fluid and solid inflation. Such a class of media comprises perfect fluids, zero and finite temperature solids. By using an effective field theory description, we compute the power spectrum for the scalar curvature perturbation of constant energy density hypersurface $zeta$ and the comoving scalar curvature perturbation ${cal R}$ in the case of slow-roll, super slow-roll and $w$-media inflation, an inflationary phase with $w$ constant in the range $-1 <w <-1/3$. A similar computation is done for the tensor modes. Adiabatic media are characterized by intrinsic entropy perturbations that can give a significant contribution to the power spectrum and can be used to generate the required seed for primordial black holes. For such a media, the Weinberg theorem is typically violated and on super horizon scales neither $zeta$ nor ${cal R}$ are conserved and moreover $zeta eq {cal R}$. Reheating becomes crucial to predict the spectrum of the imprinted primordial perturbations. We study how the difference between $zeta$ and ${cal R}$ during inflation gives rise to relative entropic perturbations in $Lambda$CDM.
We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the c
We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions, the setup is free from the ghost and gradient instabilities while it hosts a
In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the dynamical systems theory. We focus in the study of two explicit models where it is possible to sum the infinite series of higher curvature corr
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit a