ﻻ يوجد ملخص باللغة العربية
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruhs model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of $ e $-folds. As in the result for the canonical inflation, the regularized power spectrum tends to the bare power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the bare power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving non-minimal coupling and varying speed of sound.
We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic
We examine the effect of the thermal vacuum on the power spectrum of inflation by using the thermal field dynamics. We find that the thermal effect influences the CMB anisotropy at large length scale. After removing the divergence by using the hologr
We study the dynamics of inflation driven by an adiabatic self-gravitating medium, extending the previous works on fluid and solid inflation. Such a class of media comprises perfect fluids, zero and finite temperature solids. By using an effective fi
We consider the dynamics of power-law inflation with a nonminimally coupled scalar field $phi$. It is well known that multiple scalar fields with exponential potentials $V(phi)=V_0 {rm exp}(-sqrt{16pi/p m_{rm pl}^2} phi)$ lead to an inflationary solu
We examine whether an extended scenario of a two-scalar-field model, in which a mixed kinetic term of canonical and phantom scalar fields is involved, admits the Bianchi type I metric, which is homogeneous but anisotropic spacetime, as its power-law