ﻻ يوجد ملخص باللغة العربية
Let $A_{k,t}$ be the matrix that represents the adjacency matrix of the intersection bipartite graph of all subsets of size $t$ of ${1,2,...,k}$. We give constructions of large isolation sets in $A_{k,t}$, where, for a large enough $k$, our constructions are the best possible. We first prove that the largest identity submatrix in $A_{k,t}$ is of size $k-2t+2$. Then we provide constructions of isolations sets in $A_{k,t}$ for any $tgeq 2$, as follows: begin{itemize} item If $k = 2t+r$ and $0 leq r leq 2t-3$, there exists an isolation set of size $2r+3 = 2k-4t+3$. item If $k geq 4t-3$, there exists an isolation set of size $k$. end{itemize} The construction is maximal for $kgeq 4t-3$, since the Boolean rank of $A_{k,t}$ is $k$ in this case. As we prove, the construction is maximal also for $k = 2t, 2t+1$. Finally, we consider the problem of the maximal triangular isolation submatrix of $A_{k,t}$ that has ones in every entry on the main diagonal and below it, and zeros elsewhere. We give an optimal construction of such a submatrix of size $({2t choose t}-1) times ({2t choose t}-1)$, for any $t geq 1$ and a large enough $k$. This construction is tight, as there is a matching upper bound, which can be derived from a theorem of Frankl about skew matrices.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992)
A $k$-uniform hypergraph with $n$ vertices is an $(n,k,ell)$-omitting system if it does not contain two edges whose intersection has size exactly $ell$. If in addition it does not contain two edges whose intersection has size greater than $ell$, then
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this
A finite subset $X$ of the Euclidean space is called an $m$-distance set if the number of distances between two distinct points in $X$ is equal to $m$. An $m$-distance set $X$ is said to be maximal if any vector cannot be added to $X$ while maintaini