ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent sets in hypergraphs omitting an intersection

129   0   0.0 ( 0 )
 نشر من قبل Xizhi Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A $k$-uniform hypergraph with $n$ vertices is an $(n,k,ell)$-omitting system if it does not contain two edges whose intersection has size exactly $ell$. If in addition it does not contain two edges whose intersection has size greater than $ell$, then it is an $(n,k,ell)$-system. R{o}dl and v{S}iv{n}ajov{a} proved a lower bound for the independence number of $(n,k,ell)$-systems that is sharp in order of magnitude for fixed $2 le ell le k-1$. We consider the same question for the larger class of $(n,k,ell)$-omitting systems. For $kle 2ell+1$, we believe that the behavior is similar to the case of $(n,k,ell)$-systems and prove a nontrivial lower bound for the first open case $ell=k-2$. For $k>2ell+1$ we give new lower and upper bounds which show that the minimum independence number of $(n,k,ell)$-omitting systems has a very different behavior than for $(n,k,ell)$-systems. Our lower bound for $ell=k-2$ uses some adaptations of the random greedy independent set algorithm, and our upper bounds (constructions) for $k> 2ell+1$ are obtained from some pseudorandom graphs. We also prove some related results where we forbid more than two edges with a prescribed common intersection size and this leads to some applications in Ramsey theory. For example, we obtain good bounds for the Ramsey number $r_{k}(F^{k},t)$, where $F^{k}$ is the $k$-uniform Fan. Here the behavior is quite different than the case $k=2$ which reduces to the classical graph Ramsey number $r(3,t)$.



قيم البحث

اقرأ أيضاً

We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs t order term for all (fixed) $rge 3$, with $d$ and $n$ going to infinity. In the case of strong independent sets, for $r=3$, we provide an upper bound that is tight up to the second-order term, improving on a result of Ordentlich-Roth (2004). The tightness in the strong independent set case is established by an explicit construction of a $3$-uniform, $d$-regular, cross-edge free, linear hypergraph on $n$ vertices which could be of interest in other contexts. We leave open the general case(s) with some conjectures. Our proofs use the occupancy method introduced by Davies, Jenssen, Perkins, and Roberts (2017).
A hypergraph is a generalization of a graph where edges can connect any number of vertices. In this paper, we extend the study of locating-dominating sets to hypergraphs. Along with some basic results, sharp bounds for the location-domination number of hypergraphs in general and exact values with specified conditions are investigated. Moreover, locating-dominating sets in some specific hypergraphs are found.
200 - Nathan Reff 2015
For a given hypergraph, an orientation can be assigned to the vertex-edge incidences. This orientation is used to define the adjacency and Laplacian matrices. In addition to studying these matrices, several related structures are investigated includi ng the incidence dual, the intersection graph (line graph), and the 2-section. A connection is then made between oriented hypergraphs and balanced incomplete block designs.
141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear alg ebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
The notion of a Riordan graph was introduced recently, and it is a far-reaching generalization of the well-known Pascal graphs and Toeplitz graphs. However, apart from a certain subclass of Toeplitz graphs, nothing was known on independent sets in Ri ordan graphs. In this paper, we give exact enumeration and lower and upper bounds for the number of independent sets for various classes of Riordan graphs. Remarkably, we offer a variety of methods to solve the problems that range from the structural decomposition theorem to methods in combinatorics on words. Some of our results are valid for any graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا