ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen Isotopic Composition of an Enstatite Ribbon of Probable Cometary Origin

55   0   0.0 ( 0 )
 نشر من قبل Ryan Ogliore
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Filamentary enstatite crystals are found in interplanetary dust particles of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor. We measured the O isotopic composition of an enstatite ribbon from a giant cluster interplanetary dust particle to be $delta^{18}rm{O}{=25{pm}55}$, $delta^{17}rm{O}{=-19{pm}129}$, $Delta^{17}rm{O}{=-32{pm}134}$ (2$sigma$ errors), which is inconsistent at the 2$sigma$ level with the composition of the Sun inferred from the Genesis solar wind measurements. The particles O isotopic composition, consistent with the terrestrial composition, implies that it condensed from a gas of non-solar O isotopic composition, possibly as a result of vaporization of disk region enriched in $^{16}$O-depleted solids. The relative scarcity of filamentary enstatite in asteroids compared to comets implies either that this crystal condensed from dust vaporized textit{in-situ} in the outer Solar System where comets formed, or it condensed in the inner Solar System and was subsequently transported outward to the comet-forming region.



قيم البحث

اقرأ أيضاً

Individual particles from comet 81P/Wild 2 collected by NASAs Stardust mission vary in size from small sub-$mu$m fragments found in the walls of the aerogel tracks, to large fragments up to tens of $mu$m in size found towards the termini of tracks. T he comet, in an orbit beyond Neptune since its formation, retains an intact a record of early-Solar-System processes that was compromised in asteroidal samples by heating and aqueous alteration. We measured the O isotopic composition of seven Stardust fragments larger than $sim$2 $mu$m extracted from five different Stardust aerogel tracks, and 63 particles smaller than $sim$2 $mu$m from the wall of a Stardust track. The larger particles show a relatively narrow range of O isotopic compositions that is consistent with $^{16}$O-poor phases commonly seen in meteorites. Many of the larger Stardust fragments studied so far have chondrule-like mineralogy which is consistent with formation in the inner Solar System. The fine-grained material shows a very broad range of O isotopic compositions ($-70<Delta^{17}$O$<+60$) suggesting that Wild 2 fines are either primitive outer-nebula dust or a very diverse sampling of inner Solar System compositional reservoirs that accreted along with a large number of inner-Solar-System rocks to form comet Wild 2.
The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher t emperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine-grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar $delta^{15}N$ and $delta^{13}C$; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium-heterogeneity and having mean H- and N-isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer-sized areas highly enriched in $^{15}N$ ($delta^{15}N$ up to 1600 permil). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.
Molecular cations are present in various astronomical environments, most notably in cometary atmospheres and tails where sunlight produces exceptionally bright near-UV to visible transitions. Such cations typically have longer-wavelength and brighter electronic emission than their corresponding neutrals. A robust understanding of their near-UV to visible properties would allow these cations to be used as tools for probing the local plasma environments or as tracers of neutral gas in cometary environments. However, full spectral models are not possible for characterization of small, oxygen containing molecular cations given the body of molecular data currently available. The five simplest such species (H2O+, CO+2 , CO+, OH+, and O+2 ) are well characterized in some spectral regions but are lacking robust reference data in others. Such knowledge gaps hinder fully quantitative models of cometary spectra, specifically, hindering accurate estimates of physical-chemical processes originating with the most common molecules in comets. Herein the existing spectral data are collected for these molecules and highlight the places where future work is needed, specifically where the lack of such data would greatly enhance the understanding of cometary evolution.
Chondrites are rocky fragments of asteroids that formed at different times and heliocentric distances in the early solar system. Most chondrite groups contain water-bearing minerals, attesting that both water-ice and dust were accreted on their paren t asteroids. Nonetheless, the hydrogen isotopic composition (D/H) of water in the different chondrite groups remains poorly constrained, due to the intimate mixture of hydrated minerals and organic compounds, the other main H-bearing phase in chondrites. Building on our recent works using in situ secondary ion mass spectrometry analyses, we determined the H isotopic composition of water in a large set of chondritic samples (CI, CM, CO, CR, and C-ungrouped carbonaceous chondrites) and report that water in each group shows a distinct and unique D/H signature. Based on a comparison with literature data on bulk chondrites and their water and organics, our data do not support a preponderant role of parent-body processes in controlling the D/H variations among chondrites. Instead, we propose that the water and organic D/H signatures were mostly shaped by interactions between the protoplanetary disk and the molecular cloud that episodically fed the disk over several million years. Because the preservation of D-rich interstellar water and/or organics in chondritic materials is only possible below their respective sublimation temperatures (160 and 350-450 K), the H isotopic signatures of chondritic materials depend on both the timing and location at which their parent body formed.
The ratios of the three stable oxygen isotopes 16O, 17O and 18O on Earth and, as far as we know in the solar system, show variations on the order of a few percent at most, with a few outliers in meteorites. However, in the interstellar medium there a re some highly fractionated oxygen isotopic ratios in some specific molecules. The goal of this work is to investigate the oxygen isotopic ratios in different volatile molecules found in the coma of comet 67P/Churyumov-Gerasimenko and compare them with findings from interstellar clouds in order to assess commonalities and differences. To accomplish this goal, we analyzed data from the ROSINA instrument on Rosetta during its mission around the comet. 16O/18O ratios could be determined for O2, methanol, formaldehyde, carbonyl sulfide and sulfur monoxide/dioxide. For O2 the 16O/17O ratio is also available. Some ratios are strongly enriched in the heavy isotopes, especially for sulfur bearing molecules and formaldehyde, whereas for methanol the ratios are compatible with the ones in the solar system. O2 falls in-between, but its oxygen isotopic ratios clearly differ from water, which likely rules out an origin of O2 from water, be it by radiolysis, dismutation during sublimation or the Eley-Rideal process from water ions hitting the nucleus as postulated in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا