ﻻ يوجد ملخص باللغة العربية
The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine-grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar $delta^{15}N$ and $delta^{13}C$; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium-heterogeneity and having mean H- and N-isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer-sized areas highly enriched in $^{15}N$ ($delta^{15}N$ up to 1600 permil). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.
We present here several laboratory analyses performed on the freshly fallen Mukundpura CM chondrite. Results of infrared transmission spectroscopy, thermogravimetry analysis and reflectance spectroscopy show that Mukundpura is mainly composed of phyl
Filamentary enstatite crystals are found in interplanetary dust particles of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor
Iron-60 (t1/2=2.62 Myr) is a short-lived nuclide that can help constrain the astrophysical context of solar system formation and date early solar system events. A high abundance of 60Fe (60Fe/56Fe= 4x10-7) was reported by in situ techniques in some c
Potentially hazardous asteroids (PHAs) represent a unique opportunity for physical characterization during their close approaches to Earth. The proximity of these asteroids makes them accessible for sample-return and manned missions, but could also r
The porosity of an asteroid is important when studying the evolution of our solar system through small bodies and for planning mitigation strategies to avoid disasters due to asteroid impacts. Our knowledge of asteroid porosity largely relies on mete