ﻻ يوجد ملخص باللغة العربية
The propagation and transformation of water waves over varying bathymetries is a subject of fundamental interest to ocean, coastal and harbor engineers. The specific bathymetry considered in this paper consists of one or two, naturally formed or man-made, trenches. The problem we focus on is the transformation of an incoming solitary wave by the trench(es), and the impact of the resulting wave system on a vertical wall located after the trench(es). The maximum run-up and the maximum force exerted on the wall are calculated for various lengths and heights of the trench(es), and are compared with the corresponding quantities in the absence of them. The calculations have been performed by using the fully nonlinear water-wave equations, in the form of the Hamiltonian coupled-mode theory, recently developed in Papoutsellis et al (Eur. J. Mech. B/Fluids, Vol. 72, 2018, pp. 199-224). Comparisons of the calculated free-surface elevation with existing experimental results indicate that the effect of the vortical flow, inevitably developed within and near the trench(es) but not captured by any potential theory, is not important concerning the frontal wave flow regime. This suggests that the predictions of the run-up and the force on the wall by nonlinear potential theory are expected to be nearly realistic. The main conclusion of our investigation is that the presence of two tandem trenches in front of the wall may reduce the run-up from (about) 20% to 45% and the force from 15% to 38%, depending on the trench dimensions and the wave amplitude. The percentage reduction is greater for higher waves. The presence of only one trench leads to reductions 1.4 - 1.7 times smaller.
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a short clearance $c$ between the bubbl
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a small clearance $c$ between the bubbl
The nonlinear interaction of ultrasonic waves with a nonspherical particle may give rise to the acoustic radiation torque on the particle. This phenomenon is investigated here considering a rigid prolate spheroidal particle of subwavelength dimension
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling
The seminal Batchelor-Greens (BG) theory on the hydrodynamic interaction of two spherical particles of radii a suspended in a viscous shear flow neglects the effect of the boundaries. In the present paper we study how a plane wall modifies this inter