ﻻ يوجد ملخص باللغة العربية
The nonlinear interaction of ultrasonic waves with a nonspherical particle may give rise to the acoustic radiation torque on the particle. This phenomenon is investigated here considering a rigid prolate spheroidal particle of subwavelength dimensions that is much smaller than the wavelength. Using the partial wave expansion in spheroidal coordinates, the radiation torque of a traveling and standing plane wave with arbitrary orientation is exactly derived in the dipole approximation. We obtain asymptotic expressions of the torque as the particle geometry approaches a sphere and a straight line. As the particle is trapped in a pressure node of a standing plane wave, its radiation torque equals that of a traveling plane wave. We also find how the torque changes with the particle aspect ratio. Our findings are in excellent agreement with previous numerical computations. Also, by analyzing the torque potential energy, we determine the stable and unstable spatial configuration available for a particle.
The acoustic radiation force produced by ultrasonic waves is the workhorse of particle manipulation in acoustofluidics. Nonspherical particles are also subjected to a mean torque known as the acoustic radiation torque. Together they constitute the me
We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous viscoelastic particle in the long-wave limit (the particle radius is much smaller than the incident wavelength) by an arbitrary wave. We assume that th
We demonstrate that the acoustic spin of a first-order Bessel beam can be transferred to a subwavelength (prolate) spheroidal particle at the beam axis in a viscous fluid. The induced radiation torque is proportional to the acoustic spin, which scale
The nonlinear interaction of a time-harmonic acoustic wave with an anisotropic particle gives rise to the radiation force and torque effects. These phenomena are at the heart of the acoustofluidics technology, where microparticles such as cells and m
We present ten new equilibrium solutions to plane Couette flow in small periodic cells at low Reynolds number (Re) and two new traveling-wave solutions. The solutions are continued under changes of Re and spanwise period. We provide a partial classif