ﻻ يوجد ملخص باللغة العربية
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a short clearance $c$ between the bubble interface and the wall. Motivated by the fact that numerically and experimentally measured migration velocities are considerably higher than the velocity estimated by the available analytical solution using the Fax{e}n mirror image technique for $a/(a+c)ll 1$ (here $a$ is the bubble radius), when the clearance parameter $varepsilon(= c/a)$ is comparable to or smaller than unity, the numerical analysis based on the boundary-fitted finite-difference approach solving the Stokes equation is performed to complement the experiment. The migration velocity is found to be more affected by the high-order deformation modes with decreasing $varepsilon$. The numerical simulations are compared with a theoretical migration velocity obtained from a lubrication study of a nearly spherical drop, which describes the role of the squeezing flow within the bubble-wall gap. The numerical and lubrication analyses consistently demonstrate that when $varepsilonleq 1$, the lubrication effect makes the migration velocity asymptotically $mu V_{B1}^2/(25varepsilon gamma)$ (here, $V_{B1}$, $mu$, and $gamma$ denote the rising velocity, the dynamic viscosity of liquid, and the surface tension, respectively).
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a small clearance $c$ between the bubbl
Series of experiments on turbulent bubbly channel flows observed bubble clusters near the wall which can change large-scale flow structures. To gain insights into clustering mechanisms, we study the interaction of a pair of spherical bubbles rising i
Hard particle erosion and cavitation damage are two main wear problems that can affect the internal components of hydraulic machinery such as hydraulic turbines or pumps. If both problems synergistically act together, the damage can be more severe an
Dynamics of a bubble impacting and sliding a tilted surface has been investigated through experimental and computational methods. textcolor{blue}{Specifically, shear stress generated on the wall has been calculated and compared with bacterium adhesio
We discuss an inertial migration of oblate spheroids in a plane channel, where steady laminar flow is generated by a pressure gradient. Our lattice Boltzmann simulations show that spheroids orient in the flow, so that their minor axis coincides with