ﻻ يوجد ملخص باللغة العربية
We propose to jointly learn multi-view geometry and warping between views of the same object instances for robust cross-view object detection. What makes multi-view object instance detection difficult are strong changes in viewpoint, lighting conditions, high similarity of neighbouring objects, and strong variability in scale. By turning object detection and instance re-identification in different views into a joint learning task, we are able to incorporate both image appearance and geometric soft constraints into a single, multi-view detection process that is learnable end-to-end. We validate our method on a new, large data set of street-level panoramas of urban objects and show superior performance compared to various baselines. Our contribution is threefold: a large-scale, publicly available data set for multi-view instance detection and re-identification; an annotation tool custom-tailored for multi-view instance detection; and a novel, holistic multi-view instance detection and re-identification method that jointly models geometry and appearance across views.
In this article, we consider the problem of few-shot learning for classification. We assume a network trained for base categories with a large number of training examples, and we aim to add novel categories to it that have only a few, e.g., one or fi
In recent years, we have witnessed a surge of interest in multi-view representation learning, which is concerned with the problem of learning representations of multi-view data. When facing multiple views that are highly related but sightly different
Multi-typed objects Multi-view Multi-instance Multi-label Learning (M4L) deals with interconnected multi-typed objects (or bags) that are made of diverse instances, represented with heterogeneous feature views and annotated with a set of non-exclusiv
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views. However, existing graph learning methods mostly focus on the multi-view consistency issue, yet oft
Recent advances in semi-supervised learning methods rely on estimating the categories of unlabeled data using a model trained on the labeled data (pseudo-labeling) and using the unlabeled data for various consistency-based regularization. In this wor