ﻻ يوجد ملخص باللغة العربية
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views. However, existing graph learning methods mostly focus on the multi-view consistency issue, yet often neglect the inconsistency across multiple views, which makes them vulnerable to possibly low-quality or noisy datasets. To overcome this limitation, we propose a new multi-view graph learning framework, which for the first time simultaneously and explicitly models multi-view consistency and multi-view inconsistency in a unified objective function, through which the consistent and inconsistent parts of each single-view graph as well as the unified graph that fuses the consistent parts can be iteratively learned. Though optimizing the objective function is NP-hard, we design a highly efficient optimization algorithm which is able to obtain an approximate solution with linear time complexity in the number of edges in the unified graph. Furthermore, our multi-view graph learning approach can be applied to both similarity graphs and dissimilarity graphs, which lead to two graph fusion-based variants in our framework. Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
Despite the impressive clustering performance and efficiency in characterizing both the relationship between data and cluster structure, existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the expen
In recent years, we have witnessed a surge of interest in multi-view representation learning, which is concerned with the problem of learning representations of multi-view data. When facing multiple views that are highly related but sightly different
Recent urbanization has coincided with the enrichment of geotagged data, such as street view and point-of-interest (POI). Region embedding enhanced by the richer data modalities has enabled researchers and city administrators to understand the built
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily. Based on this model, we propose a novel algorithmic framework called textit{graphon autoencoder} to build an interpretable and scalable