ترغب بنشر مسار تعليمي؟ اضغط هنا

A scaling hypothesis for matrix product states

319   0   0.0 ( 0 )
 نشر من قبل Bram Vanhecke
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the question of describing critical spin systems and field theories using matrix product states, and formulate a scaling hypothesis in terms of operators, eigenvalues of the transfer matrix, and lattice spacing in the case of field theories. Critical exponents and central charge are determined by optimizing the exponents such as to obtain a data collapse. We benchmark this method by studying critical Ising and Potts models, where we also obtain a scaling ansatz for the correlation length and entanglement entropy. The formulation of those scaling functions turns out to be crucial for studying critical quantum field theories on the lattice. For the case of $lambdaphi^4$ with mass $mu^2$ and lattice spacing $a$, we demonstrate a double data collapse for the correlation length $ delta xi(mu,lambda,D)=tilde{xi} left((alpha-alpha_c)(delta/a)^{-1/ u}right)$ with $D$ the bond dimension, $delta$ the gap between eigenvalues of the transfer matrix, and $alpha_c=mu_R^2/lambda$ the parameter which fixes the critical quantum field theory.



قيم البحث

اقرأ أيضاً

The power of matrix product states to describe infinite-size translational-invariant critical spin chains is investigated. At criticality, the accuracy with which they describe ground state properties of a system is limited by the size $chi$ of the m atrices that form the approximation. This limitation is quantified in terms of the scaling of the half-chain entanglement entropy. In the case of the quantum Ising model, we find $S sim {1/6}log chi$ with high precision. This result can be understood as the emergence of an effective finite correlation length $xi_chi$ ruling of all the scaling properties in the system. We produce five extra pieces of evidence for this finite-$chi$ scaling, namely, the scaling of the correlation length, the scaling of magnetization, the shift of the critical point, and the scaling of the entanglement entropy for a finite block of spins. All our computations are consistent with a scaling relation of the form $xi_chisim chi^{kappa}$, with $kappa=2$ for the Ising model. In the case of the Heisenberg model, we find similar results with the value $kappasim 1.37$. We also show how finite-$chi$ scaling allow to extract critical exponents. These results are obtained using the infinite time evolved block decimation algorithm which works in the thermodynamical limit and are verified to agree with density matrix renormalization group results.
169 - F. Verstraete , J.I. Cirac 2010
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.
A generic method to investigate many-body continuous-variable systems is pedagogically presented. It is based on the notion of matrix product states (so-called MPS) and the algorithms thereof. The method is quite versatile and can be applied to a wid e variety of situations. As a first test, we show how it provides reliable results in the computation of fundamental properties of a chain of quantum harmonic oscillators achieving off-critical and critical relative errors of the order of 10^(-8) and 10^(-4) respectively. Next, we use it to study the ground state properties of the quantum rotor model in one spatial dimension, a model that can be mapped to the Mott insulator limit of the 1-dimensional Bose-Hubbard model. At the quantum critical point, the central charge associated to the underlying conformal field theory can be computed with good accuracy by measuring the finite-size corrections of the ground state energy. Examples of MPS-computations both in the finite-size regime and in the thermodynamic limit are given. The precision of our results are found to be comparable to those previously encountered in the MPS studies of, for instance, quantum spin chains. Finally, we present a spin-off application: an iterative technique to efficiently get numerical solutions of partial differential equations of many variables. We illustrate this technique by solving Poisson-like equations with precisions of the order of 10^(-7).
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an d D is the dimension of the MPS matrices. In the first regime MPS can be used to perform finite size scaling (FSS). In the complementary regime the MPS simulations show instead the clear signature of finite entanglement scaling (FES). In the thermodynamic limit (or large N limit), only MPS in the FSS regime maintain a finite overlap with the exact ground state. This observation has implications on how to correctly perform FSS with MPS, as well as on the performance of recent MPS algorithms for systems with PBC. It also gives clear evidence that critical models can actually be simulated very well with MPS by using the right scaling relations; in the appendix, we give an alternative derivation of the result of Pollmann et al. [Phys. Rev. Lett. 102, 255701 (2009)] relating the bond dimension of the MPS to an effective correlation length.
We construct matrix product steady state for a class of interacting particle systems where particles do not obey hardcore exclusion, meaning each site can occupy any number of particles subjected to the global conservation of total number of particle s in the system. To represent the arbitrary occupancy of the sites, the matrix product ansatz here requires an infinite set of matrices which in turn leads to an algebra involving infinite number of matrix equations. We show that these matrix equations, in fact, can be reduced to a single functional relation when the matrices are parametric functions of the representative occupation number. We demonstrate this matrix formulation in a class of stochastic particle hopping processes on a one dimensional periodic lattice where hop rates depend on the occupation numbers of the departure site and its neighbors within a finite range; this includes some well known stochastic processes like, totally asymmetric zero range process, misanthrope process, finite range process and partially asymmetr
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا