ترغب بنشر مسار تعليمي؟ اضغط هنا

A 1D kinetic model for CMB Comptonization

45   0   0.0 ( 0 )
 نشر من قبل Alfredo Sandoval-Villalbazo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a novel derivation of the expressions that describe the distortions of the cosmic microwave background curve due to the interactions between photons and the electrons present in dilute ionized systems. In this approach, a simplified one-dimensional evolution equation for the photon number occupation is applied to describe the mentioned interaction. This methodology emphasizes the physical features of the Sunyaev-Zeldovich effect and suggests the existence of links between basic statistical physics and complex applications involving radiative processes.

قيم البحث

اقرأ أيضاً

In this work, we introduce an effective model for both ideal and viscous fluid dynamics within the framework of kinetic field theory (KFT). The main application we have in mind is cosmic structure formation where gaseous components need to be gravita tionally coupled to dark matter. However, we expect that the fluid model is much more widely applicable. The idea behind the effective model is similar to that of smoothed particle hydrodynamics. By introducing mesoscopic particles equipped with a position, a momentum, and an enthalpy, we construct a free theory for such particles and derive suitable interaction operators. We then show that the model indeed leads to the correct macroscopic evolution equations, namely the continuity, Euler, Navier-Stokes, and energy conservation equations of both ideal and viscous hydrodynamics.
287 - Zhenning Cai , Yuwei Fan , Ruo Li 2020
We make a brief historical review to the moment model reduction to the kinetic equations, particularly the Grads moment method for Boltzmann equation. The focus is on the hyperbolicity of the reduced model, which is essential to the existence of its classical solution as a Cauchy problem. The theory of the framework we developed in last years is then introduced, which may preserve the hyperbolic nature of the kinetic equations with high universality. Some lastest progress on the comparison between models with/without hyperbolicity is presented to validate the hyperbolic moment models for rarefied gases.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
76 - Saul Ares , Angel Sanchez 2004
We present a modified version of the one-dimensional sine-Gordon that exhibits a thermodynamic, roughening phase transition, in analogy with the 2D usual sine-Gordon model. The model is suited to study the crystalline growth over an impenetrable subs trate and to describe the wetting transition of a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrodinger equation for the model, which allows to obtain some analytical insight, and to compute numerically the free energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model, finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition between a low temperature flat phase and a high temperature rough one. The fact that the model is one dimensional and that it has a true phase transition makes it an ideal framework for further studies of roughening phase transitions.
97 - Spyros Sotiriadis 2015
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known as Generalized Gibbs Ensemble (GGE), that is expected to describe the relaxation of integrable systems after a quantum quench. By analytically studying the quench dynamics in a prototypical one-dimensional critical model, the massless free bosonic field theory, we find evidence of a novel type of equilibration characterized by the preservation of an enormous amount of memory of the initial state that is accessible by local measurements. In particular, we show that the equilibration retains memory of non-Gaussian initial correlations, in contrast to the case of massive free evolution which erases all such memory. The GGE in its standard form, being a Gaussian ensemble, fails to predict correctly the equilibrium values of local observables, unless the initial state is Gaussian itself. Our findings show that the equilibration of a broad class of quenches whose evolution is described by Luttinger liquid theory with an initial state that is non-Gaussian in terms of the bosonic field, is not correctly captured by the corresponding bosonic GGE, raising doubts about the validity of the latter in general one-dimensional gapless integrable systems such as the Lieb-Liniger model. We also propose that the same experiment by which the GGE was recently observed [Langen et al., Science 348 (2015) 207-211] can also be used to observe its failure, simply by starting from a non-Gaussian initial state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا