ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium roughening transition in a 1D modified sine-Gordon model

77   0   0.0 ( 0 )
 نشر من قبل Sa\\'ul Ares
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a modified version of the one-dimensional sine-Gordon that exhibits a thermodynamic, roughening phase transition, in analogy with the 2D usual sine-Gordon model. The model is suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrodinger equation for the model, which allows to obtain some analytical insight, and to compute numerically the free energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model, finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition between a low temperature flat phase and a high temperature rough one. The fact that the model is one dimensional and that it has a true phase transition makes it an ideal framework for further studies of roughening phase transitions.



قيم البحث

اقرأ أيضاً

111 - Niurka R. Quintero , 2000
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temp erature. We find that the kink behavior is very similar to that obtained in the overdamped limit: There is a quadratic dependence on temperature in the diffusion coefficient that comes from the interaction among the kink and phonons, and the average value of the wave function increases with $sqrt{t}$ due to the variance of the centers of individual realizations and not due to kink distortions. These analytical results are fully confirmed by numerical simulations.
103 - Angel Sanchez , 2000
We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon models on a lattice. We analytically compute the main features of the expected high temperature phase of both models, described by the Edwards-Wilkinso n equation. We then use those results to locate the transition temperatures of both models in our Langevin dynamics simulations. We show that our results reconcile previous contradictory numerical works concerning the superroughening transition in the random sine-Gordon model. We also find evidence supporting the existence of two different low temperature phases for the disordered model. We discuss our results in view of the different analytical predictions available and comment on the nature of these two putative phases.
149 - D. X. Horvath , G. Takacs 2017
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has a general applicability in free boson TCSA. The numerical results are used to confirm the validity of a previously proposed analytical Ansatz for the initial state in the sinh-Gordon quench.
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non -equilibrium thermodynamics. Our findings show that this model keeps the signature of the equilibrium phase transition. Moreover the critical temperature of the equilibrium models correspond to the state maximizing the entropy and delimits two out-of-equilibrium regimes, one satisfying the Onsager relations for systems close to equilibrium and one resembling convective turbulent states. Since the model preserves the entropy and energy fluxes in the scale space, it seems a good candidate for parametric studies of out-of-equilibrium turbulent systems.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا