ﻻ يوجد ملخص باللغة العربية
Model compression has become necessary when applying neural networks (NN) into many real application tasks that can accept slightly-reduced model accuracy with strict tolerance to model complexity. Recently, Knowledge Distillation, which distills the knowledge from well-trained and highly complex teacher model into a compact student model, has been widely used for model compression. However, under the strict requirement on the resource cost, it is quite challenging to achieve comparable performance with the teacher model, essentially due to the drastically-reduced expressiveness ability of the compact student model. Inspired by the nature of the expressiveness ability in Neural Networks, we propose to use multi-segment activation, which can significantly improve the expressiveness ability with very little cost, in the compact student model. Specifically, we propose a highly efficient multi-segment activation, called Light Multi-segment Activation (LMA), which can rapidly produce multiple linear regions with very few parameters by leveraging the statistical information. With using LMA, the compact student model is capable of achieving much better performance effectively and efficiently, than the ReLU-equipped one with same model scale. Furthermore, the proposed method is compatible with other model compression techniques, such as quantization, which means they can be used jointly for better compression performance. Experiments on state-of-the-art NN architectures over the real-world tasks demonstrate the effectiveness and extensibility of the LMA.
Despite the success of deep neural networks (DNNs), state-of-the-art models are too large to deploy on low-resource devices or common server configurations in which multiple models are held in memory. Model compression methods address this limitation
We tackle the problem of producing compact models, maximizing their accuracy for a given model size. A standard solution is to train networks with Quantization Aware Training, where the weights are quantized during training and the gradients approxim
Recently, an extensive amount of research has been focused on compressing and accelerating Deep Neural Networks (DNN). So far, high compression rate algorithms require part of the training dataset for a low precision calibration, or a fine-tuning pro
We study the neural network (NN) compression problem, viewing the tension between the compression ratio and NN performance through the lens of rate-distortion theory. We choose a distortion metric that reflects the effect of NN compression on the mod
Machine Learning models should ideally be compact and robust. Compactness provides efficiency and comprehensibility whereas robustness provides resilience. Both topics have been studied in recent years but in isolation. Here we present a robust model