ترغب بنشر مسار تعليمي؟ اضغط هنا

The Knowledge Within: Methods for Data-Free Model Compression

166   0   0.0 ( 0 )
 نشر من قبل Matan Haroush
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, an extensive amount of research has been focused on compressing and accelerating Deep Neural Networks (DNN). So far, high compression rate algorithms require part of the training dataset for a low precision calibration, or a fine-tuning process. However, this requirement is unacceptable when the data is unavailable or contains sensitive information, as in medical and biometric use-cases. We present three methods for generating synthetic samples from trained models. Then, we demonstrate how these samples can be used to calibrate and fine-tune quantized models without using any real data in the process. Our best performing method has a negligible accuracy degradation compared to the original training set. This method, which leverages intrinsic batch normalization layers statistics of the trained model, can be used to evaluate data similarity. Our approach opens a path towards genuine data-free model compression, alleviating the need for training data during model deployment.



قيم البحث

اقرأ أيضاً

We introduce DeepInversion, a new method for synthesizing images from the image distribution used to train a deep neural network. We invert a trained network (teacher) to synthesize class-conditional input images starting from random noise, without u sing any additional information about the training dataset. Keeping the teacher fixed, our method optimizes the input while regularizing the distribution of intermediate feature maps using information stored in the batch normalization layers of the teacher. Further, we improve the diversity of synthesized images using Adaptive DeepInversion, which maximizes the Jensen-Shannon divergence between the teacher and student network logits. The resulting synthesized images from networks trained on the CIFAR-10 and ImageNet datasets demonstrate high fidelity and degree of realism, and help enable a new breed of data-free applications - ones that do not require any real images or labeled data. We demonstrate the applicability of our proposed method to three tasks of immense practical importance -- (i) data-free network pruning, (ii) data-free knowledge transfer, and (iii) data-free continual learning. Code is available at https://github.com/NVlabs/DeepInversion
Model inversion, whose goal is to recover training data from a pre-trained model, has been recently proved feasible. However, existing inversion methods usually suffer from the mode collapse problem, where the synthesized instances are highly similar to each other and thus show limited effectiveness for downstream tasks, such as knowledge distillation. In this paper, we propose Contrastive Model Inversion~(CMI), where the data diversity is explicitly modeled as an optimizable objective, to alleviate the mode collapse issue. Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination. To this end, we introduce in CMI a contrastive learning objective that encourages the synthesizing instances to be distinguishable from the already synthesized ones in previous batches. Experiments of pre-trained models on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI not only generates more visually plausible instances than the state of the arts, but also achieves significantly superior performance when the generated data are used for knowledge distillation. Code is available at url{https://github.com/zju-vipa/DataFree}.
Despite the success of deep neural networks (DNNs), state-of-the-art models are too large to deploy on low-resource devices or common server configurations in which multiple models are held in memory. Model compression methods address this limitation by reducing the memory footprint, latency, or energy consumption of a model with minimal impact on accuracy. We focus on the task of reducing the number of learnable variables in the model. In this work we combine ideas from weight hashing and dimensionality reductions resulting in a simple and powerful structured multi-hashing method based on matrix products that allows direct control of model size of any deep network and is trained end-to-end. We demonstrate the strength of our approach by compressing models from the ResNet, EfficientNet, and MobileNet architecture families. Our method allows us to drastically decrease the number of variables while maintaining high accuracy. For instance, by applying our approach to EfficentNet-B4 (16M parameters) we reduce it to to the size of B0 (5M parameters), while gaining over 3% in accuracy over B0 baseline. On the commonly used benchmark CIFAR10 we reduce the ResNet32 model by 75% with no loss in quality, and are able to do a 10x compression while still achieving above 90% accuracy.
200 - Yuhang Li , Feng Zhu , Ruihao Gong 2020
User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.
Knowledge distillation (KD) has enabled remarkable progress in model compression and knowledge transfer. However, KD requires a large volume of original data or their representation statistics that are not usually available in practice. Data-free KD has recently been proposed to resolve this problem, wherein teacher and student models are fed by a synthetic sample generator trained from the teacher. Nonetheless, existing data-free KD methods rely on fine-tuning of weights to balance multiple losses, and ignore the diversity of generated samples, resulting in limited accuracy and robustness. To overcome this challenge, we propose robustness and diversity seeking data-free KD (RDSKD) in this paper. The generator loss function is crafted to produce samples with high authenticity, class diversity, and inter-sample diversity. Without real data, the objectives of seeking high sample authenticity and class diversity often conflict with each other, causing frequent loss fluctuations. We mitigate this by exponentially penalizing loss increments. With MNIST, CIFAR-10, and SVHN datasets, our experiments show that RDSKD achieves higher accuracy with more robustness over different hyperparameter settings, compared to other data-free KD methods such as DAFL, MSKD, ZSKD, and DeepInversion.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا