ترغب بنشر مسار تعليمي؟ اضغط هنا

High-order couplings in geometric complex networks of neurons

57   0   0.0 ( 0 )
 نشر من قبل Alejandro Tlaie
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where travelling synchronization waves are observed out of a first-neighbours based coupling, to evaluate the changes induced when higher-order dynamical interactions are included. We observe that the travelling wave phenomenon gets enhanced by these interactions, allowing the information to travel further in the system without generating pathological full synchronization states. This scheme could be a step towards a simple modelization of neuroglial networks.



قيم البحث

اقرأ أيضاً

We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neurons firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of non-symmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, also chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.
136 - Carlo R. Laing 2021
We consider large networks of theta neurons and use the Ott/Antonsen ansatz to derive degree-based mean field equations governing the expected dynamics of the networks. Assuming random connectivity we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks, and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.
139 - G. Ruffini , C. Ray , J. Marco 2005
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activat ion between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.
In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counte racting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demonstrate that both weak and strong connections can be used to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.
We show that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in s mall networks. We also analyze consistency, defined as the persistence of coexistent synchronization patterns regardless of the initial conditions. Our results show that complex weighted networks display richer consistency than regular networks, suggesting why certain functional network topologies are often constructed when experimental data are analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا