ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of degree distributions in random networks of Type-I neurons

137   0   0.0 ( 0 )
 نشر من قبل Carlo Laing
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Carlo R. Laing




اسأل ChatGPT حول البحث

We consider large networks of theta neurons and use the Ott/Antonsen ansatz to derive degree-based mean field equations governing the expected dynamics of the networks. Assuming random connectivity we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks, and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.

قيم البحث

اقرأ أيضاً

We consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons with the same in-degree. A Gaussian copula is used to introduce correlations between a neurons in- and out-degree and numerical bifurcation analysis is used determine the effects of these correlations on the networks dynamics. For excitatory coupling we find that inducing positive correlations has a similar effect to increasing the coupling strength between neurons, while for inhibitory coupling it has the opposite effect. We also determine the propensity of various two- and three-neuron motifs to occur as correlations are varied and give a plausible explanation for the observed changes in dynamics.
Degree assortativity refers to the increased or decreased probability of connecting two neurons based on their in- or out-degrees, relative to what would be expected by chance. We investigate the effects of such assortativity in a network of theta ne urons. The Ott/Antonsen ansatz is used to derive equations for the expected state of each neuron, and these equations are then coarse-grained in degree space. We generate families of effective connectivity matrices parametrised by assortativity coefficient and use SVD decompositions of these to efficiently perform numerical bifurcation analysis of the coarse-grained equations. We find that of the four possible types of degree assortativity, two have no effect on the networks dynamics, while the other two can have a significant effect.
56 - A. Tlaie , I. Leyva , I. Sendi~na 2019
We explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where travelling synchronization waves are observed out of a first-neighbours based coupling, to evalu ate the changes induced when higher-order dynamical interactions are included. We observe that the travelling wave phenomenon gets enhanced by these interactions, allowing the information to travel further in the system without generating pathological full synchronization states. This scheme could be a step towards a simple modelization of neuroglial networks.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investi gate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
We focus on the problem of how wealth is distributed among the units of a networked economic system. We first review the empirical results documenting that in many economies the wealth distribution is described by a combination of log--normal and pow er--law behaviours. We then focus on the Bouchaud--Mezard model of wealth exchange, describing an economy of interacting agents connected through an exchange network. We report analytical and numerical results showing that the system self--organises towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular we show that if the network displays a homogeneous density of links, the wealth distribution displays either the log--normal or the power--law form. This means that the first--order topological properties alone (such as the scale--free property) are not enough to explain the emergence of the empirically observed emph{mixed} form of the wealth distribution. In order to reproduce this nontrivial pattern, the network has to be heterogeneously divided into regions with variable density of links. We show new results detailing how this effect is related to the higher--order correlation properties of the underlying network. In particular, we analyse assortativity by degree and the pairwise wealth correlations, and discuss the effects that these properties have on each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا