ﻻ يوجد ملخص باللغة العربية
In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demonstrate that both weak and strong connections can be used to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phe
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this
Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning tree formulation of link f
Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular those mediated by the Internet). We use analytical and numerical solu