ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic helicity and eruptivity in active region 12673

82   0   0.0 ( 0 )
 نشر من قبل Kostas Moraitis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. In September 2017 the largest X-class flare of Solar Cycle 24 occurred from the most active region (AR) of this cycle, AR 12673. The AR attracted much interest because of its unique morphological and evolution characteristics. Among the parameters examined in the AR was magnetic helicity, but either only approximately, and/or intermittently. Aims. This work is interested in studying the evolution of the relative magnetic helicity and of the two components of its decomposition, the non-potential, and the volume-threading one, in the time interval around the highest activity of AR 12673. Special emphasis is given on the study of the ratio of the non-potential to total helicity, that was recently proposed as an indicator of ARs eruptivity. Methods. For these, we first approximate the coronal magnetic field of the AR with two different optimization-based extrapolation procedures, and choose the one that produces the most reliable helicity value at each instant. Moreover, in one of these methods, we weight the optimization by the uncertainty estimates derived from the Helioseismic and Magnetic Imager (HMI) instrument, for the first time. We then follow an accurate method to compute all quantities of interest. Results. The first observational determination of the evolution of the non-potential to total helicity ratio seems to confirm the quality it has in indicating eruptivity. This ratio increases before the major flares of AR 12673, and afterwards it relaxes to smaller values. Additionally, the evolution patterns of the various helicity, and energy budgets of AR 12673 are discussed and compared with other works.

قيم البحث

اقرأ أيضاً

The discovery of clear criteria that can deterministically describe the eruptive state of a solar active region would lead to major improvements on space weather predictions. Using series of numerical simulations of the emergence of a magnetic flux r ope in a magnetized coronal, leading either to eruptions or to stable configurations, we test several global scalar quantities for the ability to discriminate between the eruptive and the non-eruptive simulations. From the magnetic field generated by the three-dimensional magnetohydrodynamical simulations, we compute and analyse the evolution of the magnetic flux, of the magnetic energy and its decomposition into potential and free energies, and of the relative magnetic helicity and its decomposition. Unlike the magnetic flux and magnetic energies, magnetic helicities are able to markedly distinguish the eruptive from the non-eruptive simulations. We find that the ratio of the magnetic helicity of the current-carrying magnetic field to the total relative helicity presents the highest values for the eruptive simulations, in the pre-eruptive phase only. We observe that the eruptive simulations do not possess the highest value of total magnetic helicity. In the framework of our numerical study, the magnetic energies and the total relative helicity do not correspond to good eruptivity proxies. Our study highlights that the ratio of magnetic helicities diagnoses very clearly the eruptive potential of our parametric simulations. Our study shows that magnetic-helicity-based quantities may be very efficient for the prediction of solar eruptions.
79 - Hongqi Zhang 2013
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic re presentation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k^{-11/3} power law at large wavenumbers, which implies a k^{-5/3} spectrum for the modulus of the current helicity. A k^{-5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm^{-1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.
Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X 2.2 flare in NOAA 12673 on 2017 September 6. It exhibits two episodes of flare brightening with rather complex, atypical ribbons. Based on topology analysis of extrapolated coronal magnetic field, we revealed that there is a two-step magnetic reconnection process during the flare. Prior to the flare, there is a magnetic flux rope (MFR) with one leg rooted in a rotating sunspot. Neighboring to the leg is a magnetic null-point structure. The sunspot drives the MFR to expand, pushing magnetic flux to the null point, and reconnection is first triggered there. The disturbance from the null-point reconnection triggers the second reconnection, i.e., a tether-cutting reconnection below the rope. However, these two reconnections failed to produce an eruption, because the rope is firmly held by its strapping flux. Furthermore, we compared this flare with an eruptive X9.3 flare in the same region with 2 hours later, which has a similar MFR configuration. The key difference between them is that, for the confined flare, the MFR is fully below the threshold of torus instability, while for the eruptive one, the MFR reaches entirely above the threshold. This study provides a good evidence supporting that reconnection alone may not be able to trigger eruption, rather, MHD instability plays a more important role.
In this work, we investigate the formation of a magnetic flux rope (MFR) above the central polarity inversion line (PIL) of NOAA Active Region 12673 during its early emergence phase. Through analyzing the photospheric vector magnetic field, extreme u ltraviolet (EUV) and ultraviolet (UV) images, extrapolated three-dimensional (3D) non-linear force-free fields (NLFFFs), as well as the photospheric motions, we find that with the successive emergence of different bipoles in the central region, the conjugate polarities separate, resulting in collision between the non-conjugated opposite polarities. Nearly-potential loops appear above the PIL at first, then get sheared and merge at the collision locations as evidenced by the appearance of a continuous EUV sigmoid on 2017 September 4, which also indicates the formation of an MFR. The 3D NLFFFs further reveal the gradual buildup of the MFR, accompanied by the appearance of two elongated bald patches (BPs) at the collision locations and a very low-lying hyperbolic flux tube configuration between the BPs. The final MFR has relatively steady axial flux and average twist number of around $2.1times 10^{20}$~Mx and -1.5, respective. Shearing motions are found developing near the BPs when the collision occurs, with flux cancellation and UV brightenings being observed simultaneously, indicating the development of a process named as collisional shearing (firstly identified by Chintzoglou et al. 2019). The results clearly show that the MFR is formed by collisional shearing, i.e., through shearing and flux cancellation driven by the collision between non-conjugated opposite polarities during their emergence.
Two X-class solar flares occurred on 2017 September 6 from active region NOAA 12673: the first one is a confined X2.2 flare, and it is followed only $sim 3$ hours later by the second one, which is the strongest flare in solar cycle 24, reaching X9.3 class and accompanied with a coronal mass ejection. Why these two X-class flares occurred in the same position with similar magnetic configurations, but one is eruptive while the other is not? Here we track the coronal magnetic field evolution via nonlinear force-free field extrapolations from a time sequence of vector magnetograms with high cadence. A detailed analysis of the magnetic field shows that a magnetic flux rope (MFR) forms and grows gradually before the first flare, and shortly afterwards, the MFRs growth is significantly enhanced with a much faster rise in height, from far below the threshold of torus instability to above it, while the magnetic twist only increases mildly. Combining EUV observations and the magnetic field extrapolation, we found that overlying the MFR is a null-point magnetic topology, where recurrent brightening is seen after the first flare. We thus suggest a scenario to interpret the occurrence of the two flares. The first flare occurred since the MFR reached a high enough height to activate the null point, and its continuous expansion forces the null-point reconnection recurrently. Such reconnection weakens the overlying field, allowing the MFR to rise faster, which eventually crosses the threshold of torus instability and triggers the second, eruptive flare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا