ترغب بنشر مسار تعليمي؟ اضغط هنا

A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673

112   0   0.0 ( 0 )
 نشر من قبل Chaowei Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X2.2 flare in NOAA 12673 on 2017 September 6. It exhibits two episodes of flare brightening with rather complex, atypical ribbons. Based on topology analysis of extrapolated coronal magnetic field, we revealed that there is a two-step magnetic reconnection process during the flare. Prior to the flare, there is a magnetic flux rope (MFR) with one leg rooted in a rotating sunspot. Neighboring to the leg is a magnetic null-point structure. The sunspot drives the MFR to expand, pushing magnetic flux to the null point, and reconnection is first triggered there. The disturbance from the null-point reconnection triggers the second reconnection, i.e., a tether-cutting reconnection below the rope. However, these two reconnections failed to produce an eruption, because the rope is firmly held by its strapping flux. Furthermore, we compared this flare with an eruptive X9.3 flare in the same region with 2 hours later, which has a similar MFR configuration. The key difference between them is that, for the confined flare, the MFR is fully below the threshold of torus instability, while for the eruptive one, the MFR reaches entirely above the threshold. This study provides a good evidence supporting that reconnection alone may not be able to trigger eruption, rather, MHD instability plays a more important role.

قيم البحث

اقرأ أيضاً

192 - A.M. Veronig , W. Polanec 2015
We study the energy-release process in the confined X1.6 flare that occurred on 22 October 2014 in AR 12192. Magnetic-reconnection rates and reconnection fluxes are derived from three different data sets: space-based data from the Atmospheric Imaging Assembly (AIA) 1600 {AA} filter onboard the Solar Dynamics Observatory (SDO) and ground-based H$alpha$ and Ca II K filtergrams from Kanzelhohe Observatory. The magnetic-reconnection rates determined from the three data sets all closely resemble the temporal profile of the hard X-rays measured by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), which are a proxy for the flare energy released into high-energy electrons. The total magnetic-reconnection flux derived lies between $4.1 times 10^{21}$ Mx (AIA 1600 {AA}) and $7.9 times 10^{21}$ Mx (H$alpha$), which corresponds to about 2 to 4% of the total unsigned flux of the strong source AR. Comparison of the magnetic-reconnection flux dependence on the GOES class for 27 eruptive events collected from previous studies (covering B to $>$X10 class flares) reveals a correlation coefficient of $approx 0.8$ in double-logarithmic space. The confined X1.6 class flare under study lies well within the distribution of the eruptive flares. The event shows a large initial separation of the flare ribbons and no separation motion during the flare. In addition, we note enhanced emission at flare-ribbon structures and hot loops connecting these structures before the event starts. These observations are consistent with the emerging-flux model, where newly emerging small flux tubes reconnect with pre-existing large coronal loops.
Two X-class solar flares occurred on 2017 September 6 from active region NOAA 12673: the first one is a confined X2.2 flare, and it is followed only $sim 3$ hours later by the second one, which is the strongest flare in solar cycle 24, reaching X9.3 class and accompanied with a coronal mass ejection. Why these two X-class flares occurred in the same position with similar magnetic configurations, but one is eruptive while the other is not? Here we track the coronal magnetic field evolution via nonlinear force-free field extrapolations from a time sequence of vector magnetograms with high cadence. A detailed analysis of the magnetic field shows that a magnetic flux rope (MFR) forms and grows gradually before the first flare, and shortly afterwards, the MFRs growth is significantly enhanced with a much faster rise in height, from far below the threshold of torus instability to above it, while the magnetic twist only increases mildly. Combining EUV observations and the magnetic field extrapolation, we found that overlying the MFR is a null-point magnetic topology, where recurrent brightening is seen after the first flare. We thus suggest a scenario to interpret the occurrence of the two flares. The first flare occurred since the MFR reached a high enough height to activate the null point, and its continuous expansion forces the null-point reconnection recurrently. Such reconnection weakens the overlying field, allowing the MFR to rise faster, which eventually crosses the threshold of torus instability and triggers the second, eruptive flare.
Magnetic flux ropes (MFRs) are believed to be the core structure in solar eruptions, nevertheless, their formation remains intensely debated. Here we report a rapid buildup process of an MFR-system during a confined X2.2 class flare occurred on 2017 September 6 in NOAA AR 12673, three hours after which the structure erupted to a major coronal mass ejection (CME) accompanied by an X9.3 class flare. For the X2.2 flare, we do not find EUV dimmings, separation of its flare ribbons, or clear CME signatures, suggesting a confined flare. For the X9.3 flare, large-scale dimmings, separation of its flare ribbons, and a CME show it to be eruptive. By performing a time sequence of nonlinear force-free fields (NLFFFs) extrapolations we find that: until the eruptive flare, an MFR-system was located in the AR. During the confined flare, the axial flux and the lower bound of the magnetic helicity for the MFR-system were dramatically enhanced by about 86% and 260%, respectively, although the mean twist number was almost unchanged. During the eruptive flare, the three parameters were all significantly reduced. The results evidence the buildup and release of the MFR-system during the confined and the eruptive flare, respectively. The former may be achieved by flare reconnection. We also calculate the pre-flare distributions of the decay index above the main polarity inversion line (PIL) and find no significant difference. It indicates that the buildup of the magnetic flux and helicity of the MFR-system may play a role in facilitating its final eruption.
On SOL2017-09-06 solar active region 12673 produced an X9.3 flare which is regarded as largest to occur in solar cycle 24. In this work we have preformed a magnetohydrodynamic (MHD) simulation in order to reveal the three-dimensional (3D) dynamics of the magnetic fields associated with the X9.3 solar flare. We first performed an extrapolation of the 3D magnetic field based on the observed photospheric magnetic field prior to the flare and then used it as the initial condition for an MHD simulation. Consequently, the simulation showed a dramatic eruption. In particular, we found that a large coherent flux rope composed of highly twisted magnetic field lines is formed during the eruption. A series of small flux ropes are found to lie along a magnetic polarity inversion line prior to the flare. Reconnection occurring between each small flux rope during the early stages of the eruption forms the large and highly twisted flux rope.Furthermore, we found a writhing motion of the erupting flux rope. The understanding of these dynamics is important in increasing the accuracy of space weather forecasting. We report on the detailed dynamics of the 3D eruptive flux rope and discuss the possible mechanisms of the writhing motion.
92 - J.K. Thalmann , Y. Su , M. Temmer 2015
The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fie lds served as a strong, also lateral, confinement for a series of large two-ribbon flares originating from the core of the active region. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this active region was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10^25 J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا