ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative magnetic helicity as a diagnostic of solar eruptivity

369   0   0.0 ( 0 )
 نشر من قبل Etienne Pariat
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of clear criteria that can deterministically describe the eruptive state of a solar active region would lead to major improvements on space weather predictions. Using series of numerical simulations of the emergence of a magnetic flux rope in a magnetized coronal, leading either to eruptions or to stable configurations, we test several global scalar quantities for the ability to discriminate between the eruptive and the non-eruptive simulations. From the magnetic field generated by the three-dimensional magnetohydrodynamical simulations, we compute and analyse the evolution of the magnetic flux, of the magnetic energy and its decomposition into potential and free energies, and of the relative magnetic helicity and its decomposition. Unlike the magnetic flux and magnetic energies, magnetic helicities are able to markedly distinguish the eruptive from the non-eruptive simulations. We find that the ratio of the magnetic helicity of the current-carrying magnetic field to the total relative helicity presents the highest values for the eruptive simulations, in the pre-eruptive phase only. We observe that the eruptive simulations do not possess the highest value of total magnetic helicity. In the framework of our numerical study, the magnetic energies and the total relative helicity do not correspond to good eruptivity proxies. Our study highlights that the ratio of magnetic helicities diagnoses very clearly the eruptive potential of our parametric simulations. Our study shows that magnetic-helicity-based quantities may be very efficient for the prediction of solar eruptions.



قيم البحث

اقرأ أيضاً

81 - K. Moraitis , X. Sun , E. Pariat 2019
Context. In September 2017 the largest X-class flare of Solar Cycle 24 occurred from the most active region (AR) of this cycle, AR 12673. The AR attracted much interest because of its unique morphological and evolution characteristics. Among the para meters examined in the AR was magnetic helicity, but either only approximately, and/or intermittently. Aims. This work is interested in studying the evolution of the relative magnetic helicity and of the two components of its decomposition, the non-potential, and the volume-threading one, in the time interval around the highest activity of AR 12673. Special emphasis is given on the study of the ratio of the non-potential to total helicity, that was recently proposed as an indicator of ARs eruptivity. Methods. For these, we first approximate the coronal magnetic field of the AR with two different optimization-based extrapolation procedures, and choose the one that produces the most reliable helicity value at each instant. Moreover, in one of these methods, we weight the optimization by the uncertainty estimates derived from the Helioseismic and Magnetic Imager (HMI) instrument, for the first time. We then follow an accurate method to compute all quantities of interest. Results. The first observational determination of the evolution of the non-potential to total helicity ratio seems to confirm the quality it has in indicating eruptivity. This ratio increases before the major flares of AR 12673, and afterwards it relaxes to smaller values. Additionally, the evolution patterns of the various helicity, and energy budgets of AR 12673 are discussed and compared with other works.
We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced 2D mean-field dynamo model with dynamo saturation based on the evolution of the magne tic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by $-{bf A cdot B}$ evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here ${bf B}$ and ${bf A}$ are respectively the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magneto-hydrodynamics. While many methods to compute magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coor dinate system for solar applications, helicity is only treated approximately. We present here a method to properly compute relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions, and comparison with an approximate method used in the past, indicates that the proposed methodology can be significantly more accurate, thus making our method a promising tool in helicity studies that employ the spherical geometry. Additionally, the range of applicability of the approximate method is determined and discussed.
123 - Hongqi Zhang 2013
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic re presentation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k^{-11/3} power law at large wavenumbers, which implies a k^{-5/3} spectrum for the modulus of the current helicity. A k^{-5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm^{-1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.
We propose a novel approach to reconstruct the surface magnetic helicity density on the Sun or sun-like stars. The magnetic vector potential is determined via decomposition of vector magnetic field measurements into toroidal and poloidal components. The method is verified using data from a non-axisymmetric dynamo model. We apply the method to vector field synoptic maps from Helioseismic and Magnetic Imager (HMI) onboard of Solar Dynamics Observatory (SDO) to study evolution of the magnetic helicity density during solar cycle 24. It is found that the mean helicity density of the non-axisymmetric magnetic field of the Sun evolves in a way which is similar to that reported for the current helicity density of the solar active regions. It has predominantly the negative sign in the northern hemisphere, and it is positive in the southern hemisphere. Also, the hemispheric helicity rule for the non-axisymmetric magnetic field showed the sign inversion at the end of cycle 24. Evolution of magnetic helicity density of large-scale axisymmetric magnetic field is different from that expected in dynamo theory. On one hand, the mean large- and small-scale components of magnetic helicity density display the hemispheric helicity rule of opposite sign at the beginning of cycle 24. However, later in the cycle, the two helicities exhibit the same sign in contrast with the theoretical expectations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا