ﻻ يوجد ملخص باللغة العربية
We present a measurement of the Hubble constant ($H_{0}$) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat $Lambda$CDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}$, a 2.4% precision measurement, in agreement with local measurements of $H_{0}$ from type Ia supernovae calibrated by the distance ladder, but in $3.1sigma$ tension with $Planck$ observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in $5.3sigma$ tension with $Planck$ CMB determinations of $H_{0}$ in flat $Lambda$CDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat $Lambda$CDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from $Planck$, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with $Planck$. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our $H_0$ inference to cosmological model assumptions. For six different cosmological models, our combined inference on $H_{0}$ ranges from $sim73$-$78~mathrm{km~s^{-1}~Mpc^{-1}}$, which is consistent with the local distance ladder constraints.
We present the measurement of the Hubble Constant, $H_0$, with three strong gravitational lens systems. We describe a blind analysis of both PG1115+080 and HE0435-1223 as well as an extension of our previous analysis of RXJ1131-1231. For each lens, w
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of
We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64
We performed the photometric analysis of M2 and M92 globular clusters in g and r bands of SLOAN photometric system. We transformed these g and r bands into BV bands of Johnson-Cousins photometric system and built the color magnitude diagram (CMD). We
In this work, we obtain measurements of the Hubble constant in the context of modified gravity theories. We set up our theoretical framework by considering viable cosmological $f(R)$ and $f(T)$ models, and we analyzed them through the use of geometri