ﻻ يوجد ملخص باللغة العربية
In this work, we obtain measurements of the Hubble constant in the context of modified gravity theories. We set up our theoretical framework by considering viable cosmological $f(R)$ and $f(T)$ models, and we analyzed them through the use of geometrical data sets obtained in a model-independent way, namely, gravitationally lensed quasars with measured time delays, standard clocks from cosmic chronometers, and standard candles from the Pantheon Supernovae Ia sample. We find $H_0=(72.4pm 1.4)$ km s$^{-1}$ Mpc$^{-1}$ and $H_0=(71.5pm 1.3)$ km s$^{-1}$ Mpc$^{-1}$ for the $f(R)$ and $f(T)$ models, respectively. Our results represent 1.9% and 1.8% measurements of the Hubble constant, which are fully consistent with the local estimate of $H_0$ by the Hubble Space Telescope. We do not find significant departures from general relativity, as our study shows that the characteristic parameters of the extensions of gravity beyond general relativity are compatible with the $Lambda$CDM cosmology. Moreover, within the standard cosmological framework, our full joint analysis suggests that it is possible to measure the dark energy equation of state parameter at 1.2% accuracy, although we find no statistical evidence for deviations from the cosmological constant case.
We present a model of Early Modified Gravity (EMG) consisting in a scalar field $sigma$ with a non-minimal coupling to the Ricci curvature of the type $M^2_{rm pl}+xi sigma^2$ plus a cosmological constant and a small effective mass and demonstrate it
In the context of a Hubble tension problem that is growing in its statistical significance, we reconsider the effectiveness of non-parametric reconstruction techniques which are independent of prescriptive cosmological models. By taking cosmic chrono
We present a detailed analysis of the impact of $H_0$ priors from recent surveys in the literature on the late time cosmology of five $f(T)$ cosmological models using cosmic chronometers, the Pantheon data set, and baryonic acoustic oscillation data.
Modified gravity theories predict in general a non standard equation for the propagation of gravitational waves. Here we discuss the impact of modified friction and speed of tensor modes on cosmic microwave polarization B modes. We show that the non
The goal of this short report is to summarise some key results based on our previous works on model independent tests of gravity at large scales in the Universe, their connection with the properties of gravitational waves, and the implications of the