ترغب بنشر مسار تعليمي؟ اضغط هنا

DES meets Gaia: discovery of strongly lensed quasars from a multiplet search

126   0   0.0 ( 0 )
 نشر من قبل Adriano Agnello
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64) has source- and lens-redshifts $z_{s}=0.777 pm 0.001$ and $z_l = 0.230 pm 0.002$ respectively. Its deflector has effective radius $R_{rm eff} approx 3.4^{primeprime}$, stellar mass $log(M_{star}/M_{odot}) = 11.64^{+0.20}_{-0.43}$, and shows extended isophotal shape variation. Simple lens models yield Einstein radii $R_{rm E}=(1.30pm0.04)^{primeprime},$ axis ratio $q=0.75pm0.1$ (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lensWGD2021-4115 (r.a.=20:21:39.45, dec.=--41:15:57.11) has $z_{s}=1.390pm0.001$ and $z_l = 0.335 pm 0.002$, and Einstein radius $R_{rm E} = (1.1pm0.1)^{primeprime},$ but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. We also show high-rank candidate doubles selected this way, some of which have been independently identified with different techniques, and discuss a DES+WISE quasar multiplet selection.

قيم البحث

اقرأ أيضاً

Aims: In this work, we aim to provide a reliable list of gravitational lens (GL) candidates based on a search performed over the entire Gaia Data Release 2 (Gaia DR2). We also show that the sole astrometric and photometric informations coming from th e Gaia satellite yield sufficient insights for supervised learning methods to automatically identify GL candidates with an efficiency that is comparable to methods based on image processing. Methods: We simulated 106,623,188 lens systems composed of more than two images, based on a regular grid of parameters characterizing a non-singular isothermal ellipsoid lens model in the presence of an external shear. These simulations are used as an input for training and testing our supervised learning models consisting of Extremely Randomized Trees. The latter are finally used to assign to each of the 2,129,659 clusters of celestial objects a discriminant value that reflects the ability of our simulations to match the observed relative positions and fluxes from each cluster. Once complemented with additional constraints, these discriminant values allowed us to identify GL candidates out of the list of clusters. Results: We report the discovery of 15 new quadruply-imaged lens candidates with angular separations less than 6 and assess the performance of our approach by recovering 12 out of the 13 known quadruply-imaged systems with all their components detected in Gaia DR2 with a misclassification rate of fortuitous clusters of stars as lens systems that is below one percent. Similarly, the identification capability of our method regarding quadruply-imaged systems where three images are detected in Gaia DR2 is assessed by recovering 10 out of the 13 known quadruply-imaged systems having one of their constituting images discarded. The associated misclassification rate varying then between 5.8% and 20%, depending on the image we decided to remove.
The Planck sub-mm surveys detected the brightest strongly gravitationally lensed dusty galaxies in the sky. The combination of their extreme gravitational flux boosting and image stretching offers the unique possibility of measuring in detail, via hi gh-resolution imaging and spectroscopic follow-up, the galaxy structure and kinematics in early evolutionary phases, thus gaining otherwise unaccessible direct information on physical processes in action. The extraction of candidate strongly lensed galaxies (SLGs) from Planck catalogues is hindered by the fact that they are generally detected with poor S/N, except for the few brightest ones, their photometric properties are strongly blurred and they are difficult to single out. We devised a method to increase by a factor of 3 to 4 the number of identified Planck-detected SLGs, although with an unavoidably limited efficiency. Our approach uses the fact that SLGs have sub-mm colours colder than nearby dusty galaxies (the large majority of Planck extragalactic sources). The sub-mm colours of the 47 confirmed or very likely Planck-detected SLGs are used to estimate the colour range of these objects. Moreover, most nearby galaxies and radio sources can be picked up by cross-matching with IRAS and PCNT catalogues, respectively. We present samples of 177, 97, 104 lensed candidates at 545, 857, 353 GHz, respectively. The efficiency of our approach, tested on the SPT survey covering 2,500 sq. deg., is estimated to be of 30%-40%. We also discuss stricter selection criteria increasing efficiency to 50% but with a somewhat lower completeness. Our analysis of SPT data has identified a dozen of galaxies that can be reliably considered previously unrecognized Planck-detected SLGs. Extrapolating the number of Planck-detected confirmed or very likely SLGs found within the SPT and H-ATLAS areas, we expect from 150 to 190 such sources over the|b|>20deg sky.
We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epoch $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey dimming of $approx0.8$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($R_{rm E}approx0.2$) in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7$ and $2.0,$ velocity dispersion $267-280$km/s and enclosed mass $approx 6times10^{11}M_{odot},$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $approx 85$ (resp. $approx125$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.
We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a m ethod that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i < 20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.
We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey (SDSS), selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 on either side of a galaxy, has source and lens redshifts $z_s = 1.54$ and $z_l = 0.343$. The AO-assisted images of J2211+1929 show two point sources separated by 1.04, corresponding to the same quasar at $z_s = 1.07,$ besides the lens galaxy and Einstein ring. Images of J2257+2349 show two point sources separated by 1.67 on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at redshift $z_s = 2.10$. In total, the two selection techniques identified 309 lens candidates, including 47 known lenses, and 6 previously ruled out candidates. 55 of the remaining candidates were observed using NIRC2 and ESI at Keck Observatory, EFOSC2 at the ESO-NTT (La Silla), and SAM and the Goodman spectrograph at SOAR. Of the candidates observed, 3 were confirmed as lenses, 36 were ruled out, and 16 remain inconclusive. Taking into account that we recovered known lenses, this gives us a success rate of at least 50/309 (16%). This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars. Developing and refining these techniques is essential for efficient identification of these rare lenses in ongoing and future photometric surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا