ﻻ يوجد ملخص باللغة العربية
Generalized coherent states (GCs) under deformed quantum mechanics which exhibits intrinsic minimum length and maximum momentum have been well studied following Gazeau-Klauder approach. In this paper, as an extension to the study of quantum deformation, we investigate the famous Schrodinger cat states (SCs) under these two classes of quantum deformation. Following the concept of generalized Gazeau-Klauder Schrodinger cat states (GKSCs), we construct the deformed-GKSCs for both phenomenological models that exhibit intrinsic minimum length and (or) maximum momentum. All comparisons between minimum length and maximum momentum deformations are illustrated and plots are done in even and odd cat states since they are one of the most important classic statistical characteristics of SCs. Probability distribution and entropies are studied. In general, deformed cat states do not possess the original even and odd states statistical properties. Non-classical properties of the deformed-GKSCs are explored in terms of Mandel Q parameter, quadrature squeezing as well as Husimi quasi-probability distribution. Some of these distinguishing quantum-gravitational features may possibly be realized qualitatively and even be measured quantitatively in future experiments with the advanced development in quantum atomic and optics technology.
We modify the time dependent Schrodinger-Newton equation by using a potential for a solid sphere suggested by Jaaskelainen (Jaaskelainen 2012 Phys. Rev. A 86 052105) as well as a hollow-sphere potential. Compared to our recent paper (Giulini and Gro{
The analysis of the modifications that the presence of a deformed dispersion relation entails in the roots of the so--called degree of coherence function, for a beam embodying two different frequencies and moving in a Michelson interferometer, is car
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition
When two equal photon-number states are combined on a balanced beam splitter, both output ports of the beam splitter contain only even numbers of photons. Consider the time-reversal of this interference phenomenon: the probability that a pair of phot
Mesoscopic quantum superpositions, or Schrodinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance