ﻻ يوجد ملخص باللغة العربية
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition of coherent states around the origo of the phase space. The separation of the coherent states in the superposition will be amplified during the process.
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum
Quantum engineering using photonic structures offer new capabilities for atom-photon interactions for quantum optics and atomic physics, which could eventually lead to integrated quantum devices. Despite the rapid progress in the variety of structure
Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schrodinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen