ﻻ يوجد ملخص باللغة العربية
When two equal photon-number states are combined on a balanced beam splitter, both output ports of the beam splitter contain only even numbers of photons. Consider the time-reversal of this interference phenomenon: the probability that a pair of photon-number-resolving detectors at the output ports of a beam splitter both detect the same number of photons depends on the overlap between the input state of the beam splitter and a state containing only even photon numbers. Here, we propose using this even-parity detection to engineer quantum states containing only even photon-number terms. As an example, we demonstrate the ability to prepare superpositions of two coherent states with opposite amplitudes, i.e. two-component Schrodinger cat states. Our scheme can prepare cat states of arbitrary size with nearly perfect fidelity. Moreover, we investigate engineering more complex even-parity states such as four-component cat states by iteratively applying our even-parity detector.
We propose a postselecting parity-swap amplifier for Schrodinger cat states that does not require the amplified state to be known a priori. The device is based on a previously-implemented state comparison amplifier for coherent states. It consumes on
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen
In the late 80s, Ou and Mandel experimentally observed signal beatings by performing a non-time resolved coincidence detection of two photons having interfered in a balanced beam splitter [Phys. Rev. Lett 61, 54 (1988)]. In this work, we provide a ne
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process