ﻻ يوجد ملخص باللغة العربية
Ab-initio Quantum Monte Carlo (QMC) calculations of nuclei from deuterium to 40Ca, obtained using four different phenomenological and local chiral nuclear potentials, are analyzed using the Generalized Contact Formalism (GCF). We extract spin- and isospin-dependent nuclear contact terms for each interaction in both coordinate and momentum space. The extracted contact terms, that count the number of short-range correlated (SRC) pairs with different quantum numbers, are dependent on the nuclear interaction model used in the QMC calculation. However, the ratios of contact terms for a nucleus A to deuterium (for spin-1 pn pairs) or to 4He (for all NN pairs) are independent of the nuclear interaction model and are the same for both short-distance and high-momentum pairs. This implies that the relative abundance of short-range pairs in the nucleus is a long-range (mean-field) quantity that is insensitive to the short-distance nature of the nuclear force. Measurements of exclusive (e,eNN) pair breakup processes are instead more sensitive to short-range dynamics
Pair densities and associated correlation functions provide a critical tool for introducing many-body correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-densities exhibit strong spin and isospin de
The recent x>1 (e,e) and correlation experiments at momentum transfer Q^2 ge 2 GeV^2 confirm presence of short-range correlations (SRC) in nuclei mostly build of nucleons. Recently we evaluated in a model independent way the dominant photon contrib
The two-nucleon momentum distributions have been calculated for nuclei up to A=40 and various values of the relative and center-of-mass momenta and angle between them. For complex nuclei a parameter-free linked-cluster expansion, based upon a realist
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of sca