ﻻ يوجد ملخص باللغة العربية
Pair densities and associated correlation functions provide a critical tool for introducing many-body correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-densities exhibit strong spin and isospin dependence. However, such calculations are not available for all nuclei of current interest. We therefore provide a simple model, which involves combining the short and long separation distance behavior using a single blending function, to accurately describe the two-nucleon correlations inherent in existing ab initio calculations. We show that the salient features of the correlation function arise from the features of the two-body short-range nuclear interaction, and that the suppression of the pp and nn pair-densities caused by the Pauli principle is important. Our procedure for obtaining pair-density functions and correlation functions can be applied to heavy nuclei which lack ab initio calculations.
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model within a zero-range approximation. The observed $A$ dependence of 2-nucleon ejection cross sections in
We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal energies based on the multi-nucleon short-range correlation~(SRC) model. The approach is based on the effective Feynman diagrammatic method which all
The recent x>1 (e,e) and correlation experiments at momentum transfer Q^2 ge 2 GeV^2 confirm presence of short-range correlations (SRC) in nuclei mostly build of nucleons. Recently we evaluated in a model independent way the dominant photon contrib
The nucleon momentum distribution $n_A(k)$ for $A=$2, 3, 4, 16, and 40 nuclei is systematically analyzed in terms of wave functions resulting from advanced solutions of the nonrelativistic Schr{o}dinger equation, obtained within different many-body a
Ab-initio Quantum Monte Carlo (QMC) calculations of nuclei from deuterium to 40Ca, obtained using four different phenomenological and local chiral nuclear potentials, are analyzed using the Generalized Contact Formalism (GCF). We extract spin- and is