ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Intrinsic Symbolic Rewards in Reinforcement Learning

206   0   0.0 ( 0 )
 نشر من قبل Somdeb Majumdar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning effective policies for sparse objectives is a key challenge in Deep Reinforcement Learning (RL). A common approach is to design task-related dense rewards to improve task learnability. While such rewards are easily interpreted, they rely on heuristics and domain expertise. Alternate approaches that train neural networks to discover dense surrogate rewards avoid heuristics, but are high-dimensional, black-box solutions offering little interpretability. In this paper, we present a method that discovers dense rewards in the form of low-dimensional symbolic trees - thus making them more tractable for analysis. The trees use simple functional operators to map an agents observations to a scalar reward, which then supervises the policy gradient learning of a neural network policy. We test our method on continuous action spaces in Mujoco and discrete action spaces in Atari and Pygame environments. We show that the discovered dense rewards are an effective signal for an RL policy to solve the benchmark tasks. Notably, we significantly outperform a widely used, contemporary neural-network based reward-discovery algorithm in all environments considered.

قيم البحث

اقرأ أيضاً

299 - Shariq Iqbal , Fei Sha 2019
Solving tasks with sparse rewards is one of the most important challenges in reinforcement learning. In the single-agent setting, this challenge is addressed by introducing intrinsic rewards that motivate agents to explore unseen regions of their sta te spaces; however, applying these techniques naively to the multi-agent setting results in agents exploring independently, without any coordination among themselves. Exploration in cooperative multi-agent settings can be accelerated and improved if agents coordinate their exploration. In this paper we introduce a framework for designing intrinsic rewards which consider what other agents have explored such that the agents can coordinate. Then, we develop an approach for learning how to dynamically select between several exploration modalities to maximize extrinsic rewards. Concretely, we formulate the approach as a hierarchical policy where a high-level controller selects among sets of policies trained on diverse intrinsic rewards and the low-level controllers learn the action policies of all agents under these specific rewards. We demonstrate the effectiveness of the proposed approach in cooperative domains with sparse rewards where state-of-the-art methods fail and challenging multi-stage tasks that necessitate changing modes of coordination.
Computer-aided design of molecules has the potential to disrupt the field of drug and material discovery. Machine learning, and deep learning, in particular, have been topics where the field has been developing at a rapid pace. Reinforcement learning is a particularly promising approach since it allows for molecular design without prior knowledge. However, the search space is vast and efficient exploration is desirable when using reinforcement learning agents. In this study, we propose an algorithm to aid efficient exploration. The algorithm is inspired by a concept known in the literature as curiosity. We show on three benchmarks that a curious agent finds better performing molecules. This indicates an exciting new research direction for reinforcement learning agents that can explore the chemical space out of their own motivation. This has the potential to eventually lead to unexpected new molecules that no human has thought about so far.
Active reinforcement learning (ARL) is a variant on reinforcement learning where the agent does not observe the reward unless it chooses to pay a query cost c > 0. The central question of ARL is how to quantify the long-term value of reward informati on. Even in multi-armed bandits, computing the value of this information is intractable and we have to rely on heuristics. We propose and evaluate several heuristic approaches for ARL in multi-armed bandits and (tabular) Markov decision processes, and discuss and illustrate some challenging aspects of the ARL problem.
Intelligent agents must pursue their goals in complex environments with partial information and often limited computational capacity. Reinforcement learning methods have achieved great success by creating agents that optimize engineered reward functi ons, but which often struggle to learn in sparse-reward environments, generally require many environmental interactions to perform well, and are typically computationally very expensive. Active inference is a model-based approach that directs agents to explore uncertain states while adhering to a prior model of their goal behaviour. This paper introduces an active inference agent which minimizes the novel free energy of the expected future. Our model is capable of solving sparse-reward problems with a very high sample efficiency due to its objective function, which encourages directed exploration of uncertain states. Moreover, our model is computationally very light and can operate in a fully online manner while achieving comparable performance to offline RL methods. We showcase the capabilities of our model by solving the mountain car problem, where we demonstrate its superior exploration properties and its robustness to observation noise, which in fact improves performance. We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives and improves performance over previous active inference approaches.
We study deep reinforcement learning (RL) algorithms with delayed rewards. In many real-world tasks, instant rewards are often not readily accessible or even defined immediately after the agent performs actions. In this work, we first formally define the environment with delayed rewards and discuss the challenges raised due to the non-Markovian nature of such environments. Then, we introduce a general off-policy RL framework with a new Q-function formulation that can handle the delayed rewards with theoretical convergence guarantees. For practical tasks with high dimensional state spaces, we further introduce the HC-decomposition rule of the Q-function in our framework which naturally leads to an approximation scheme that helps boost the training efficiency and stability. We finally conduct extensive experiments to demonstrate the superior performance of our algorithms over the existing work and their variants.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا