ترغب بنشر مسار تعليمي؟ اضغط هنا

Visus: An Interactive System for Automatic Machine Learning Model Building and Curation

345   0   0.0 ( 0 )
 نشر من قبل A\\'ecio Solano Rodrigues Santos
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While the demand for machine learning (ML) applications is booming, there is a scarcity of data scientists capable of building such models. Automatic machine learning (AutoML) approaches have been proposed that help with this problem by synthesizing end-to-end ML data processing pipelines. However, these follow a best-effort approach and a user in the loop is necessary to curate and refine the derived pipelines. Since domain experts often have little or no expertise in machine learning, easy-to-use interactive interfaces that guide them throughout the model building process are necessary. In this paper, we present Visus, a system designed to support the model building process and curation of ML data processing pipelines generated by AutoML systems. We describe the framework used to ground our design choices and a usage scenario enabled by Visus. Finally, we discuss the feedback received in user testing sessions with domain experts.

قيم البحث

اقرأ أيضاً

Temporal relational data, perhaps the most commonly used data type in industrial machine learning applications, needs labor-intensive feature engineering and data analyzing for giving precise model predictions. An automatic machine learning framework is needed to ease the manual efforts in fine-tuning the models so that the experts can focus more on other problems that really need humans engagement such as problem definition, deployment, and business services. However, there are three main challenges for building automatic solutions for temporal relational data: 1) how to effectively and automatically mining useful information from the multiple tables and the relations from them? 2) how to be self-adjustable to control the time and memory consumption within a certain budget? and 3) how to give generic solutions to a wide range of tasks? In this work, we propose our solution that successfully addresses the above issues in an end-to-end automatic way. The proposed framework, AutoSmart, is the winning solution to the KDD Cup 2019 of the AutoML Track, which is one of the largest AutoML competition to date (860 teams with around 4,955 submissions). The framework includes automatic data processing, table merging, feature engineering, and model tuning, with a time&memory controller for efficiently and automatically formulating the models. The proposed framework outperforms the baseline solution significantly on several datasets in various domains.
Machine learning for building energy prediction has exploded in popularity in recent years, yet understanding its limitations and potential for improvement are lacking. The ASHRAE Great Energy Predictor III (GEPIII) Kaggle competition was the largest building energy meter machine learning competition ever held with 4,370 participants who submitted 39,403 predictions. The test data set included two years of hourly electricity, hot water, chilled water, and steam readings from 2,380 meters in 1,448 buildings at 16 locations. This paper analyzes the various sources and types of residual model error from an aggregation of the competitions top 50 solutions. This analysis reveals the limitations for machine learning using the standard model inputs of historical meter, weather, and basic building metadata. The types of error are classified according to the amount of time errors occur in each instance, abrupt versus gradual behavior, the magnitude of error, and whether the error existed on single buildings or several buildings at once from a single location. The results show machine learning models have errors within a range of acceptability on 79.1% of the test data. Lower magnitude model errors occur in 16.1% of the test data. These discrepancies can likely be addressed through additional training data sources or innovations in machine learning. Higher magnitude errors occur in 4.8% of the test data and are unlikely to be accurately predicted regardless of innovation. There is a diversity of error behavior depending on the energy meter type (electricity prediction models have unacceptable error in under 10% of test data, while hot water is over 60%) and building use type (public service less than 14%, while technology/science is just over 46%).
Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching f ormat from the conventional classroom setting. We see two research opportunities here. Students may have diverse expertise and experience in programming. Thus, particular content and teaching speed can be disengaging for experienced students or discouraging for novice learners. In a large classroom, instructors cannot oversee the learning progress of each student, and have difficulty matching teaching materials with the comprehension level of individual students. We present ClassCode, a web-based environment tailored to programming education in classrooms. Students can take online tutorials prepared by instructors at their own pace. They can then deepen their understandings by performing interactive coding exercises interleaved within tutorials. ClassCode tracks all interactions by each student, and summarizes them to instructors. This serves as a progress report, facilitating the instructors to provide additional explanations in-situ or revise course materials. Our user evaluation through a small lecture and expert review by instructors and teaching assistants confirm the potential of ClassCode by uncovering how it could address issues in existing programming courses at universities.
We propose a novel interactive learning framework which we refer to as Interactive Attention Learning (IAL), in which the human supervisors interactively manipulate the allocated attentions, to correct the models behavior by updating the attention-ge nerating network. However, such a model is prone to overfitting due to scarcity of human annotations, and requires costly retraining. Moreover, it is almost infeasible for the human annotators to examine attentions on tons of instances and features. We tackle these challenges by proposing a sample-efficient attention mechanism and a cost-effective reranking algorithm for instances and features. First, we propose Neural Attention Process (NAP), which is an attention generator that can update its behavior by incorporating new attention-level supervisions without any retraining. Secondly, we propose an algorithm which prioritizes the instances and the features by their negative impacts, such that the model can yield large improvements with minimal human feedback. We validate IAL on various time-series datasets from multiple domains (healthcare, real-estate, and computer vision) on which it significantly outperforms baselines with conventional attention mechanisms, or without cost-effective reranking, with substantially less retraining and human-model interaction cost.
We introduce a framework for AI-based medical consultation system with knowledge graph embedding and reinforcement learning components and its implement. Our implement of this framework leverages knowledge organized as a graph to have diagnosis accor ding to evidence collected from patients recurrently and dynamically. According to experiment we designed for evaluating its performance, it archives a good result. More importantly, for getting better performance, researchers can implement it on this framework based on their innovative ideas, well designed experiments and even clinical trials.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا