ﻻ يوجد ملخص باللغة العربية
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of negative next-nearest neighbor hopping $t$, the preferred period of the stripe decreases. For the values of $t$ predicted for cuprate high-T$_c$ superconductors, we find stripes with a period 4 in the charge order, in agreement with experiments. Superconductivity in the period 4 stripe is suppressed at $1/8$ doping. Only at larger doping, $0.18 lesssim delta < 0.25$, the period 4 stripe exhibits coexisting $d$-wave superconducting order. The uniform $d$-wave state is only favored for sufficiently large positive $t$.
We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconventional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing symmetry is realized, depending on a phase
Competing inhomogeneous orders are a central feature of correlated electron materials including the high-temperature superconductors. The two- dimensional Hubbard model serves as the canonical microscopic physical model for such systems. Multiple ord
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC
In a recent paper, Phys. Rev. Lett. 87, 167010/1-4 (2001), Moukouri and Jarrell presented evidence that in the two-dimensional (d=2) Hubbard model at half-filling there is a metal-insulator transition (MIT) at finite temperature even in weak coupling
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models,