ﻻ يوجد ملخص باللغة العربية
Competing inhomogeneous orders are a central feature of correlated electron materials including the high-temperature superconductors. The two- dimensional Hubbard model serves as the canonical microscopic physical model for such systems. Multiple orders have been proposed in the underdoped part of the phase diagram, which corresponds to a regime of maximum numerical difficulty. By combining the latest numerical methods in exhaustive simulations, we uncover the ordering in the underdoped ground state. We find a stripe order that has a highly compressible wavelength on an energy scale of a few Kelvin, with wavelength fluctuations coupled to pairing order. The favored filled stripe order is different from that seen in real materials. Our results demonstrate the power of modern numerical methods to solve microscopic models even in challenging settings.
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of
Unidirectional (stripe) charge-density-wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high temperature (HT) superconductors, where it generally competes with superconductivity (SC). None-the-less, on t
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emerg
The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) s
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy wit