ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformality loss and quantum criticality in topological Higgs electrodynamics in 2+1 dimensions

82   0   0.0 ( 0 )
 نشر من قبل Flavio S. Nogueira
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electromagnetic response of topological insulators and superconductors is governed by a modified set of Maxwell equations that derive from a topological Chern-Simons (CS) term in the effective Lagrangian with coupling constant $kappa$. Here we consider a topological superconductor or, equivalently, an Abelian Higgs model in $2+1$ dimensions with a global $O(2N)$ symmetry in the presence of a CS term, but without a Maxwell term. At large $kappa$, the gauge field decouples from the complex scalar field, leading to a quantum critical behavior in the $O(2N)$ universality class. When the Higgs field is massive, the universality class is still governed by the $O(2N)$ fixed point. However, we show that the massless theory belongs to a completely different universality class, exhibiting an exotic critical behavior beyond the Landau-Ginzburg-Wilson paradigm. For finite $kappa$ above a certain critical value $kappa_c$, a quantum critical behavior with continuously varying critical exponents arises. However, as a function $kappa$ a transition takes place for $|kappa| < kappa_c$ where conformality is lost. Strongly modified scaling relations ensue. For instance, in the case where $kappa^2>kappa_c^2$, leading to the existence of a conformal fixed point, critical exponents are a function of $kappa$.



قيم البحث

اقرأ أيضاً

We discuss compact (2+1)-dimensional Maxwell electrodynamics coupled to fermionic matter with N replica. For large enough N, the latter corresponds to an effective theory for the nearest neighbor SU(N) Heisenberg antiferromagnet, in which the fermion s represent solitonic excitations known as spinons. Here we show that the spinons are deconfined for $N>N_c=36$, thus leading to an insulating state known as spin liquid. A previous analysis considerably underestimated the value of $N_c$. We show further that for $20<Nleq 36$ there can be either a confined or a deconfined phase, depending on the instanton density. For $Nleq 20$ only the confined phase exist. For the physically relevant value N=2 we argue that no paramagnetic phase can emerge, since chiral symmetry breaking would disrupt it. In such a case a spin liquid or any other nontrivial paramagnetic state (for instance, a valence-bond solid) is only possible if doping or frustrating interactions are included.
225 - H. Chamati , N. S. Tonchev 2011
The quantum critical behavior of the 2+1 dimensional Gross--Neveu model in the vicinity of its zero temperature critical point is considered. The model is known to be renormalisable in the large $N$ limit, which offers the possibility to obtain expre ssions for various thermodynamic functions in closed form. We have used the concept of finite--size scaling to extract information about the leading temperature behavior of the free energy and the mass term, defined by the fermionic condensate and determined the crossover lines in the coupling ($g$) -- temperature ($T$) plane. These are given by $Tsim|g-g_c|$, where $g_c$ denotes the critical coupling at zero temperature. According to our analysis no spontaneous symmetry breaking survives at finite temperature. We have found that the leading temperature behavior of the fermionic condensate is proportional to the temperature with the critical amplitude $frac{sqrt{5}}3pi$. The scaling function of the singular part of the free energy is found to exhibit a maximum at $frac{ln2}{2pi}$ corresponding to one of the crossover lines. The critical amplitude of the singular part of the free energy is given by the universal number $frac13[frac1{2pi}zeta(3)-mathrm{Cl}_2(frac{pi}3)]=-0.274543...$, where $zeta(z)$ and $mathrm{Cl}_2(z)$ are the Riemann zeta and Clausens functions, respectively. Interpreted in terms the thermodynamic Casimir effect, this result implies an attractive Casimir force. This study is expected to be useful in shedding light on a broader class of four fermionic models.
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases, e.g., quasi-particle braiding statistics, chiral central charge and even provides us a deep insight for the nature of topological phase transitions. Recently, topological phases of quantum matter are also intensively studied in $3+1$D and it has been shown that loop like excitation obeys the so-called three-loop-braiding statistics. In this paper, we will try to establish a TQFT framework to understand the quantum statistics of particle and loop like excitation in $3+1$D. We will focus on Abelian topological phases for simplicity, however, the general framework developed here is not limited to Abelian topological phases.
We study disorder operator, defined as a symmetry transformation applied to a finite region, across a continuous quantum phase transition in $(2+1)d$. We show analytically that at a conformally-invariant critical point with U(1) symmetry, the disorde r operator with a small U(1) rotation angle defined on a rectangle region exhibits power-law scaling with the perimeter of the rectangle. The exponent is proportional to the current central charge of the critical theory. Such a universal scaling behavior is due to the sharp corners of the region and we further obtain a general formula for the exponent when the corner is nearly smooth. To probe the full parameter regime, we carry out systematic computation of the U(1) disorder parameter in the square lattice Bose-Hubbard model across the superfluid-insulator transition with large-scale quantum Monte Carlo simulations, and confirm the presence of the universal corner correction. The exponent of the corner term determined from numerical simulations agrees well with the analytical predictions.
117 - Ken Shiozaki , Shinsei Ryu 2016
Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases --symmetry-protected topological (SPT) phases in particular--defined in one dimensional lattices. On the other hand, it is natural to expect that ga pped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry $G$, we bridge their descriptions in terms of MPSs, and those in terms of $G$-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and open TFTs, which are TFTs defined on spacetimes with boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا