ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast raster scan multiplexed charge stability measurements toward high-throughput quantum dot array calibration

60   0   0.0 ( 0 )
 نشر من قبل Wonjin Jang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report raster scan multiplexed charge-stability diagram measurements for tuning multiple gate-defined quantum dots in GaAs/AlGaAs heterostructures. We evaluate the charge sensitivity of the quantum point contact (QPC) in both radio frequency (rf)-reflectometry and direct current (dc)-transport modes, where we measure the signal-to-noise ratio (SNR) of 40 for rf-QPC with integration time per pixel of 10ms , corresponding to 1.14ms for resolving single electron transition in few electron regime. The high SNR for reasonable integration time allows fast two-dimensional (2D) scanning, which we use to facilitate double and triple quantum dot tuning process. We configure highly stable raster scan multiplexed quantum dot tuning platform using a switching matrix and transformer-coupled alternating current (ac) ramp sources with software control. As an example of high-throughput multiple quantum dot tuning, we demonstrate systematic triple quantum dot (TQD) formation using this platform in which a multiplexed combination of 2D scans enables the identification of few electron regime in multiple quantum dots in just a few minutes. The method presented here is general, and we expect that the tuning platform is applicable to more complex multiple quantum dot arrays, allowing efficient quantum dot system Hamiltonian parameter calibration.



قيم البحث

اقرأ أيضاً

The advanced nanoscale integration available in silicon complementary metal-oxide-semiconductor (CMOS) technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multi-gate designs. We show here that the charge state of quantum dots formed in a CMOS nanowire device can be sensed by using floating gates to electrostatically couple it to a remote single electron transistor (SET) formed in an adjacent nanowire. By biasing the nanowire and gates of the remote SET with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling the demonstration of independent control over charge transitions in a quadruple (2x2) quantum dot array. This device overcomes the limitations associated with measurements based on tunnelling transport through the dots and permits the sensing of all charge transitions, down to the last electron in each dot. We use effective mass theory to investigate the necessary optimization of the device parameters in order to achieve the tunnel rates required for spin-based quantum computation.
66 - Louis Lyons 2014
We consider the relative merits of two different approaches to discovery or exclusion of new phenomena, a raster scan or a 2-dimensional approach.
The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$times$2 quantum dots defined electrostatically in a AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range 0-40~$mu$eV. Finally, we demonstrate fast ($sim 1$~$mu$s) single-shot readout of the spin state of electrons in the dots, through spin-to-charge conversion via Pauli spin blockade. These advances pave the way to analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.
We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a ph oto-generated electron-hole pair, is limited by the precession of the exciton spin due to the anisotropic exchange interaction.
We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing parametric amplification in a nonlinear operational mode, we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to t he situation with the parametric amplifier turned off. With an integration time of 400 ns we achieve a SNR of 76. By studying SNR as a function of the integration time we extract an equivalent charge sensitivity of 8 x 10^{-5} e/root(Hz). The high SNR allows us to acquire a DQD charge stability diagram in just 20 ms. At such a high data rate, it is possible to acquire charge stability diagrams in a live video-mode, enabling real time tuning of the DQD confinement potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا