ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier

212   0   0.0 ( 0 )
 نشر من قبل Jason Petta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing parametric amplification in a nonlinear operational mode, we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to the situation with the parametric amplifier turned off. With an integration time of 400 ns we achieve a SNR of 76. By studying SNR as a function of the integration time we extract an equivalent charge sensitivity of 8 x 10^{-5} e/root(Hz). The high SNR allows us to acquire a DQD charge stability diagram in just 20 ms. At such a high data rate, it is possible to acquire charge stability diagrams in a live video-mode, enabling real time tuning of the DQD confinement potential.



قيم البحث

اقرأ أيضاً

We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma l state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons.
The dynamics of charge qubit in a double quantum dot coupled to phonons is investigated theoretically in terms of a perturbation treatment based on a unitary transformation. The dynamical tunneling current is obtained explicitly. The result is compar ed with the standard perturbation theory at Born-Markov approximation. The decoherence induced by acoustic phonons is analyzed at length. It is shown that the contribution from deformation potential coupling is comparable to that from piezoelectric coupling in small dot size and large tunneling rate case. A possible decoupling mechanism is predicted.
Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit features that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.
129 - Shi-Hua Ouyang , Chi-Hang Lam , 2009
We develop a master equation approach to study the backaction of quantum point contact (QPC) on a double quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only when the bias voltage across the QPC exce eds a threshold value determined by the eigenstate energy difference of the DQD. This derived excitation condition agrees well with experiments on QPC-induced inelastic electron tunneling through a DQD [S. Gustavsson et al., Phys. Rev. Lett. 99, 206804(2007)]. Moreover, we propose a new scheme to generate a pure spin current by the QPC in the absence of a charge current.
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is u sed to generate a cavity enhanced optical Stark shift, enabling the QD to be resonantly tuned to the other cavity mode. A twenty-seven fold increase in photon emission from the QD is measured when the off-resonant QD is Stark shifted into the cavity mode resonance, which is attributed to radiative enhancement of the QD. A maximum tuning of 0.06 nm is achieved for the QD at an incident power of 88 {mu}W.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا