ترغب بنشر مسار تعليمي؟ اضغط هنا

Raster scan or 2-D approach?

55   0   0.0 ( 0 )
 نشر من قبل Louis Lyons
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Louis Lyons




اسأل ChatGPT حول البحث

We consider the relative merits of two different approaches to discovery or exclusion of new phenomena, a raster scan or a 2-dimensional approach.

قيم البحث

اقرأ أيضاً

We report raster scan multiplexed charge-stability diagram measurements for tuning multiple gate-defined quantum dots in GaAs/AlGaAs heterostructures. We evaluate the charge sensitivity of the quantum point contact (QPC) in both radio frequency (rf)- reflectometry and direct current (dc)-transport modes, where we measure the signal-to-noise ratio (SNR) of 40 for rf-QPC with integration time per pixel of 10ms , corresponding to 1.14ms for resolving single electron transition in few electron regime. The high SNR for reasonable integration time allows fast two-dimensional (2D) scanning, which we use to facilitate double and triple quantum dot tuning process. We configure highly stable raster scan multiplexed quantum dot tuning platform using a switching matrix and transformer-coupled alternating current (ac) ramp sources with software control. As an example of high-throughput multiple quantum dot tuning, we demonstrate systematic triple quantum dot (TQD) formation using this platform in which a multiplexed combination of 2D scans enables the identification of few electron regime in multiple quantum dots in just a few minutes. The method presented here is general, and we expect that the tuning platform is applicable to more complex multiple quantum dot arrays, allowing efficient quantum dot system Hamiltonian parameter calibration.
Most recently, both BaBar and Belle experiments found evidences of neutral $D$ mixing. In this paper, we discuss the constraints on the strong phase difference in $D^0 to Kpi$ decay from the measurements of the mixing parameters, $y^prime$, $y_{CP}$ and $x$ at the $B$ factories. The sensitivity of the measurement of the mixing parameter $y$ is estimated in BES-III experiment at $psi(3770)$ peak. We also make an estimate on the measurements of the mixing rate $R_M$. Finally, the sensitivity of the strong phase difference at BES-III are obtained by using data near the $Dbar{D}$ threshold with CP tag technique at BES-III experiment.
234 - Temple He , Prahar Mitra 2019
We show that the subleading soft photon theorem in a $(d+2)$-dimensional massless abelian gauge theory gives rise to a Ward identity corresponding to divergent large gauge transformations acting on the celestial sphere at null infinity. We further ge neralize our analysis to $(d+2)$-dimensional non-abelian gauge theories and show that the leading and subleading soft gluon theorem give rise to Ward identities corresponding to asymptotic symmetries of the theory.
We present a search for nine lepton-number-violating and three lepton-flavor-violating neutral charm decays of the type $D^0rightarrow h^{prime -} h^{-}ell^{prime +} ell^{+}$ and $D^0rightarrow h^{prime -} h^{+}ell^{primepm} ell^{mp}$, where $h$ and $h^{prime}$ represent a $K$ or $pi$ meson and $ell$ and $ell^{prime}$ an electron or muon. The analysis is based on $468$ fb$^{-1}$ of $e^+e^-$ annihilation data collected at or close to the $Y(4S)$ resonance with the BaBar detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the twelve modes and we establish 90% confidence level upper limits on the branching fractions in the range $(1.0 - 30.6)times 10^{-7}$. The limits are between one and three orders of magnitude times more stringent than previous measurements.
We report a study of the processes of $e^+e^-to K^+ (D_s^- D^{*0} + D^{*-}_s D^0)$ based on $e^+e^-$ annihilation samples collected with the BESIII detector operating at BEPCII at five center-of-mass energies ranging from 4.628 to 4.698 GeV with a to tal integrated luminosity of 3.7 fb$^{-1}$. An excess over the known contributions of the conventional charmed mesons is observed near the $D_s^- D^{*0}$ and $D^{*-}_s D^0$ mass thresholds in the $K^{+}$ recoil-mass spectrum for events collected at $sqrt{s}=4.681$ GeV. The structure matches a mass-dependent-width Breit-Wigner line shape, whose pole mass and width are determined as $(3982.5^{+1.8}_{-2.6}pm2.1)$ MeV/$c^2$ and $(12.8^{+5.3}_{-4.4}pm3.0)$ MeV, respectively. The first uncertainties are statistical and the second are systematic. The significance of the resonance hypothesis is estimated to be 5.3 $sigma$ over the contributions only from the conventional charmed mesons. This is the first candidate of the charged hidden-charm tetraquark with strangeness, decaying into $D_s^- D^{*0}$ and $D^{*-}_s D^0$. However, the properties of the excess need further exploration with more statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا