ﻻ يوجد ملخص باللغة العربية
Reconstruction of directional fields is a need in many geometry processing tasks, such as image tracing, extraction of 3D geometric features, and finding principal surface directions. A common approach to the construction of directional fields from data relies on complex optimization procedures, which are usually poorly formalizable, require a considerable computational effort, and do not transfer across applications. In this work, we propose a deep learning-based approach and study the expressive power and generalization ability.
The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. Both of these problems, however, suffer from relatively small training sets, creating the need for statistically
Inferring programs which generate 2D and 3D shapes is important for reverse engineering, editing, and more. Training such inference models is challenging due to the lack of paired (shape, program) data in most domains. A popular approach is to pre-tr
A neural radiance field (NeRF) is a scene model supporting high-quality view synthesis, optimized per scene. In this paper, we explore enabling user editing of a category-level NeRF - also known as a conditional radiance field - trained on a shape ca
Photorealistic rendering of dynamic humans is an important ability for telepresence systems, virtual shopping, synthetic data generation, and more. Recently, neural rendering methods, which combine techniques from computer graphics and machine learni
Neural Radiance Fields (NeRF) have recently gained a surge of interest within the computer vision community for its power to synthesize photorealistic novel views of real-world scenes. One limitation of NeRF, however, is its requirement of accurate c