ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity analysis for the stationary distribution of reflected Brownian motion in a convex polyhedral cone

129   0   0.0 ( 0 )
 نشر من قبل Kavita Ramanan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Reflected Brownian motion (RBM) in a convex polyhedral cone arises in a variety of applications ranging from the theory of stochastic networks to math finance, and under general stability conditions, it has a unique stationary distribution. In such applications, to implement a stochastic optimization algorithm or quantify robustness of a model, it is useful to characterize the dependence of stationary performance measures on model parameters. In this work we characterize parametric sensitivities of the stationary distribution of an RBM in a simple convex polyhedral cone; that is, sensitivities to perturbations of the parameters that define the RBM --- namely, the covariance matrix, drift vector and directions of reflection along the boundary of the polyhedral cone. In order to characterize these sensitivities we study the long time behavior of the joint process consisting of an RBM along with its so-called derivative process, which characterizes pathwise derivatives of RBMs on finite time intervals. We show that the joint process is positive recurrent, has a unique stationary distribution, and parametric sensitivities of the stationary distribution of an RBM can be expressed in terms of the stationary distribution of the joint process. This can be thought of as establishing an interchange of the differential operator and the limit in time. The analysis of ergodicity of the joint process is significantly more complicated than that of the RBM due to its degeneracy and the fact that the derivative process exhibits jumps that are modulated by the RBM. The proofs of our results rely on path properties of coupled RBMs and contraction properties related to the geometry of the polyhedral cone and directions of reflection along the boundary. Our results are potentially useful for developing efficient numerical algorithms for computing sensitivities of functionals of stationary RBMs.



قيم البحث

اقرأ أيضاً

Reflected diffusions in convex polyhedral domains arise in a variety of applications, including interacting particle systems, queueing networks, biochemical reaction networks and mathematical finance. Under suitable conditions on the data, we establi sh pathwise differentiability of such a reflected diffusion with respect to its defining parameters --- namely, its initial condition, drift and diffusion coefficients, and (oblique) directions of reflection along the boundary of the domain. We characterize the right-continuous regularization of a pathwise derivative of the reflected diffusion as the pathwise unique solution to a constrained linear stochastic differential equation with jumps whose drift and diffusion coefficients, domain and directions of reflection depend on the state of the reflected diffusion. The proof of this result relies on properties of directional derivatives of the associated (extended) Skorokhod reflection map and their characterization in terms of a so-called derivative problem, and also involves establishing certain path properties of the reflected diffusion at nonsmooth parts of the boundary of the polyhedral domain, which may be of independent interest. As a corollary, we obtain a probabilistic representation for derivatives of expectations of functionals of reflected diffusions, which is useful for sensitivity analysis of reflected diffusions.
In this work we develop an effective Monte Carlo method for estimating sensitivities, or gradients of expectations of sufficiently smooth functionals, of a reflected diffusion in a convex polyhedral domain with respect to its defining parameters --- namely, its initial condition, drift and diffusion coefficients, and directions of reflection. Our method, which falls into the class of infinitesimal perturbation analysis (IPA) methods, uses a probabilistic representation for such sensitivities as the expectation of a functional of the reflected diffusion and its associated derivative process. The latter process is the unique solution to a constrained linear stochastic differential equation with jumps whose coefficients, domain and directions of reflection are modulated by the reflected diffusion. We propose an asymptotically unbiased estimator for such sensitivities using an Euler approximation of the reflected diffusion and its associated derivative process. Proving that the Euler approximation converges is challenging because the derivative process jumps whenever the reflected diffusion hits the boundary (of the domain). A key step in the proof is establishing a continuity property of the related derivative map, which is of independent interest. We compare the performance of our IPA estimator to a standard likelihood ratio estimator (whenever the latter is applicable), and provide numerical evidence that the variance of the former is substantially smaller than that of the latter. We illustrate our method with an example of a rank-based interacting diffusion model of equity markets. Interestingly, we show that estimating certain sensitivities of the rank-based interacting diffusion model using our method for a reflected Brownian motion description of the model outperforms a finite difference method for a stochastic differential equation description of the model.
169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the u niqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
125 - Hanwu Li 2020
In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this construction is that the convergence sequence is monotone, which is helpful to establish the relation between doubly reflected G-BSDEs and double obstacle fully nonlinear partial differential equations.
264 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected backward stochastic differential equation driven by G-Brownian motion (reflected G-BSDE for short) with an upper obstacle. The existence is proved by approximation via penalization. By using a variant comparison theorem, we show that the solution we constructed is the largest one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا