ﻻ يوجد ملخص باللغة العربية
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e
We consider the well-posedness problem of multi-dimensional reflected backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators. Two methods, i.e., the penalization method and the Picard iteration a
In this paper, we study the reflected backward stochastic differential equation driven by G-Brownian motion (reflected G-BSDE for short) with an upper obstacle. The existence is proved by approximation via penalization. By using a variant comparison
In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this
In this paper, we study the well-posedness of multi-dimensional backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators, the $z$ parts of whose $l$-th components only depend on the $l$-th columns.